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Abstract: Estimation of system reliability requires understanding of the association between the lifetimes of 
components in the system. When the association between component lifetimes in the two-component parallel system 
is known, one might be able to estimate the lifetime of a more complicated system by assuming that this association 
is applicable to several of its components. When two-component parallel systems are tested, the data 

, 1,2,..., ,( )X i ni   form one component, and their concomitants [ ]Y i  randomly censored at ,( )X r  the stopping time of 

the experiment. In this article we use bivariate exponential distribution to illustrate our statistical inference 
procedures. Twenty-four asthmatic children (mean age 12.8 years) were enrolled. FENO was measured with a 
chemiluminescence analyzer. Measurements of FENO were performed before and 5, 15, 30, 45 and 60 minutes after 
spirometry or a 6-min walk test, on two separate days in random order. Geometric mean FENO at baseline was 25.6 
parts per billion (ppb) before spirometry and 23.5 ppb before exercise. A small drop of FENO to 24.2 and 23.7 ppb 
was found 5 and 15 min after spirometry (both p = 0.04). After exercise, FENO values showed a larger drop to 18.5 
ppb after 5 min and 20.7 ppb after 15 min (p < 0.001; p = 0.004 resp.). Changes in FENO occurred after exercise 
irrespective of baseline FENO and returned to baseline within 30 minutes. 
[Kavitha, N, Saiva Raju, N. Mathematical Model to find the effect of spirometry and exercise in Asthmatic 
children. Life Sci J 2013;10(2):2935-2939] (ISSN: 1097-8135). http://www.lifesciencesite.com. 406 
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1. Introduction 
Parameter estimation for bivariate shock models  
 The survival function (SF) of Bivariate 
Exponential (BVE) distribution [13] is as follows.  
 ( , ) Pr( , )F x y X x Y y    

exp( max( , ))1 2 3x y x y    ( 0, 0),x y    

… (1.1) 
and the parameter space is 

{( , , ): 0, 0, 0}.1 2 3 1 2 3           The probability 

of X Y  is not equal to zero, so the typical two-
dimensional Lebesgue measure cannot be used as the 
dominating measure to derive the probability density 
function (pdf).  
 We first estimate the mean parameters 

1 1 3    and 2 2 3    of the marginal 

distributions for X  and ,Y  respectively. We denote 

these estimates as , 1,2.ii   Then, we use the one-

parameter ‘full’ likelihood to estimate the parameter 

,3 where , 1,2,ii   are treated as functions of i  

and .3  This simple estimation method makes it easy 

to calculate their closed-form expressions, and is 
shown to perform well compared to the maximum 
likelihood extimator (MLE). 
 The plan proposed by Lu (1997) stops the 
life-testing experiment after observing the first r  

failure times of : ...(1) (2) ( )A x x x r    [11]. The 

lifetimes of component B are thus all censored at 
.( ) ( )X xr r  The available observations are 

* *(1) (2) ( ) ( 1) ( )
, ,..., , ,...,

* * * * *[1] [2] [ ] [ 1] [ ]

x x x x xr r n

y y y y yr r n

                 
        

            

… (1.2) 

where [ ]y i  is the concomitant order statistic of ,( )x i  

and data with superscript ‘*’ are censored at 
.( ) ( )X xr r  That is, the observation times 

* *,...,( 1) ( )x xr n  of unfailed components are all equal 

to ( )x r  and *
[ ] [ ]y yi i  if ;[ ] ( )y xi r  otherwise 

*
[ ] ( )y xi r . 

2. The Likelihood function  
 In the complete sample case, Bemis, Bain 
and Higgins (1972), Bhattacharyya and Johnson 
(1973) and Proschan and Sullo (1976) [4, 6, 17] 
provided several classical inference procedures for 
the BVE model parameters. Pena and Gupta (1990) 
gave Bayesian estimation results [14]. In the 
censored data case, Lu (1992a) developed Bayesian 
inference procedures with information from both 
component and system testings [10]. Lu (1997) 
derived the following general likelihood function 
[11] for the data in (1.2): 
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n r i i

    
  



    

1( ( )) ( | ) ( | ),( ) ( ) ( ) ( ) ( )
1

nn r i iF x f y X x F x X xX r Y i r Y r r
i r

    
 

 

… (2.1) 
where 1F F  denotes the survival function (SF), FX  

is cdf of , ( | )X F y QY  is the conditional SF of Y given 

the condition Q and { }.[ ] ( )I Y Xi i r    

 For the BVE distribution, examples of the 
marginal and conditional pdfs of SFs are given as 
follows. The marginal SFs for X and Y are, 
respectively, 

( ) exp{ ( ) }1 3F x xX      and ( ) exp{ ( ) }.2 3F y yY      

 A mixture of one-dimensional (v) and two-
dimensional ( )2  Lebesgue measures [6], 

,2v    is employed for deriving the pdf of (1.1): 

3
( , ) ( , ) ( , ),

1
f x y f x y R x yj j

j
 


 … (2.2) 

where ( , ) exp( ),1 1 2 1 2f x y x y     

( , ) exp( ),2 2 1 1 2f x y x y     

,( , ) exp3 3 1 2 3
xf x y      and R j  is an indicator 

for different domains of ( , )x y  with 

( , ) {0 },1R x y I x y     

( , ) {0 },2R x y I y x     and ( , ) {0 }.3R x y I x y     

The estimation and inference procedures do 
not depend on the measure defined above as long 

as the non-zero probability measure of Pr( )X Y  is 

included. For example, if one uses * 7 2v   instead 

of the measure 2v   given above, the likelihood is 

adjusted by a constant (1/7) in the ( )X Y  case. The 

estimation and inference results are unchanged. 
However, if the one-dimensional Lebesgue measure 
(v) is not included in the dominating measure, the 
likelihood and the resulting inference results are 
different.  
 Using the ratio ( , ) / ( ),f x y f xX we can derive 

the conditional cdf of Y given X = x: 

1 exp( ) for ,2

1( ) 1 exp( ) for ,| 1 21

11 exp( ) for .1 2 31

y y x

F y x y xY X x

y x y x

   

     


     

 

 Let 1 2   denote the boundary of the 

parameter space  of the BVE distribution where 

{ 0, 0, 0}1 1 2 3        and { 0} { 0}.2 1 2        Let  

 { },11 ( ) [ ]
1

r
N I X Yr i

i
 


 

 { },12 ( ) [ ] ( )
1

r
N I X Y Xi i r

i
  


 

 { },21 [ ] ( ) ( )
1

r
N I Y X Xi i r

i
  


 { },22 [ ] ( )
1

n
N I Y Xi r

i r
 
 

 

{ },3 ( ) [ ]
1

r
N I X Yi i

i
 


 ,1 11 12N N N   ,2 21 22N N N   

 ( ) ,1 ( ) ( )
1

r
W X n r Xi r

i
  


 * ,2 [ ]
1

n
W Y i

i
 


  

 max( , * ) ( ) .3 ( ) [ ] ( )
1

r
W X Y n r Xi i n

i
  


  

 After some algebraic manipulations, the 
likelihood function (2.1) for the BVE model is  

! 31 2 21 12( , , ) exp( ) on ,1 2 3 1 1 2 2 2 3 11 2 3 1 2( )!

n nn n n n
w w w

n r
            




 
From the Factorization theorem, it follows 

that { , , , , , , , }11 12 21 22 3 1 2 3N N N N N W W W is a set of 

sufficient statistics. On ,1 X  and Y  are independent 

exponential random variables, and hence Pr( ) 0,X Y   

i.e. Pr( 0) 1.3N    Therefore, when 03N   is observed, 

we must have 0.3   When 03N   is observed, then 

either 0or 0.3 3     The likelihood function in this 

case is then  
! 1 2 21 12 exp( ) on ,1 1 2 2 3 3 11 2 1 2( )!

( , )1 2 3 ! 1 21 2 12 exp( ) on .1 1 2 2 11 2( )!

n n n n n
w w w

n r

n n n n n
w w

n r


        

   
      

 



 
3. Maximum likelihood estimation  
 Equating the first partial derivatives of 

log ( , , ) on1 2 3 1l     to zero, we have the 

following likelihood equations.  

31 21 2 12 21 12, , .1 2 3
1 1 2 2 1 2 3

nn n n n n n
w w w      

      
… (3.1) 

 The second partial derivatives of 
log ( , , )1 2 3    are given as 

2 log ( , , )1 2 3 [ ]aiij
i j

    
 

   


 ( , 1, 2, 3),i j  

where 2 2,11 1 211 1a n n      0,12 21a a   

2,13 31 21 1a a n      
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2 2 ,22 2 122 2a n n      2
23 32 12 2a a n     and 

2 2 2]33 1 12 31 2 3a n n n         

4. Application  
 Fractional exhaled nitric oxide (FENO) is an 
easy, repeatable, safe and noninvasive marker of 
bronchial inflammation in allergic asthma [1, 5]. 
Exercise may reduce FENO values as well and 
guidelines recommend to retain from strenuous 
exercise for 1 hour before the FENO test [ 2, 3, 7-9, 
12, 15-16, 18-19]. FENO is increasingly used next to 
spirometry, hence it seems of practical importance to 
understand whether forced expiratory maneuvers 
influence FENO values in children. The aim of the 
present study was to observe whether or not 
spirometry or exercise immediately preceding FENO 
measurements could influence FENO values in 
asthmatic children. 
5. Methods 
 A diagnosis of asthma was based on a 
history of recurrent episodes of wheezing, coughing 
and shortness of breath, reversible 
bronchoconstriction and/or airway 
hyperresponsiveness to methacoline [8]. 24 asthmatic 
children were recruited with a range of FENO values 
[6.5 - 176.2 parts per billion (ppb)]]. None of the 
patients had a history of upper respiratory tract in 
infection or asthma exacerbation during 2 week 
before the study. 
 Study design 
 The study was performed on 2 days within 2 
week. In random order, children performed 
spirometry (day A) or a 6 min walk –test (days B). 
On both days baseline FENO was measured twice 

during a resting period of 30 min, at 30t    min 

and 15t    min. Then either exercise or 
spirometry was performed (t=0), followed by 
measurements at t=5, 15, 30, 45 and 60 min. 
Pulmonary function testing 
 Spirometry was performed with a dry rolling 
seal spirometer [7]. Three forced vital capacity 
(FVC) maneuvers were performed and the best value 
of FVC and forced expiratory volume in 1s (FEV1) 
was recorded.  
Exercise testing 
  A 6-min walk test was performed indoors 
along a long, flat, straight, enclosed corridor with a 
hard surface [2]. The test was modified and adapted 
to the study needs, children walked between two 8 m 
points for 6 min. Heart rate was recorded at the start 
and at the end of the exercise; the total number of 
rounds and the total meters covered were recorded.  
FENO measurements 
 The FENO measurements were carried out 
with the NIOX NO - analyzer [2]. Children inspired 

NO-free air and exhaled for a minimum of 7s. 
Exhalation flow was kept constant at 50 ml/s through 
a visual feedback mechanism and dynamic flow 
restrictor. At each session three correctly executed 
exhalations were recorded. FENO value were 
expressed in ppb. 
 Baseline FENO before spirometry and 
exercise were not significantly different and the two 
baseline measurements were highly reproducible 
within children. Hence, the geometric mean of the 
two baseline values was calculated and used as the 
individual baseline for the analysis. Baseline 
geometric mean FENO values were 25.6 ppb (range 
6.5-176.2 ppb) before spirometry and 23.5 ppb (range 
7.0 - 105.3 ppb) before exercise. 
 Mean FEV1 was 97% of predicted (range 
75-116%) and mean FVC was 100% of predicted 
(range 68-126%). A small but significant drop of 
FENO at 24.2 ppb and to 23.7 ppb was found, 
respectively, 5 and 15 min after spsirometry (both 
P=0.04, Fig 1). Values of FEV1, did not significantly 
correlate either with the baseline FENO or changes in 
FENO. 
 Children covered an average distance of 
473m (range 272-848m), leading to a mean increase 
in heart rate of 87 beats per minute (range 31-133). 
Nineteen subjects (79%) showed the maximum drop 
in FENO values within 5 min after exercise. The mean 
changes in FENO from baseline at 5 min after 
spirometry and exercise were significantly larger 
after exercise than after spirometry (P < 0.001, paired 
t –test).  
 

 
 
Fig 1.  FENO before and after spirometry (upper 
curve and exercise (lower curve) in asthmatic 
children (n=24). FENO is shown as geometric means 
and SEM. The changes in log-transformed FENO 
values 5 and 15 min after spirometry and exercise, 
compared to baseline values, are significant (*p = 
0.04, **p < 0.001, *** p = 0.004). 
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Result  
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Conclusion 
 Estimation of system reliability requires 
understanding of the association between the 
lifetimes of components in the system. Testing of 
components connected in series is not efficient 

compared to testing of components in parallel 
systems. Lu (1997) proposed a plan for shortening 
the testing of parallel systems. Although the life-
testing plan is motivated from the effectiveness of 
testing experiments, there are potential practical 
motivations. For example, here 24 asthmatic children 
were enrolled FENO was measured with a 
chemiluminescence analyser. After spirometry for a 
six month walk test on separate days in random order 
a bivariate exponential distribution is utilized. The 
corresponding values are obtained for both 
spirometry and exercise cases for conditional 

probability, ( )F yY  and density function.  
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