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Abstract: In this paper, the new extended trial equation method is used to solve nonlinear fractional partial 

differential equations. Based on the fractional derivative and traveling wave transformation, the fractional partial 

differential equation is turned into the nonlinear non-fractional ordinary differential equation. From here, we apply 

the new extended trial equation method, which is developed by the complete discrimination system for polynomial 

method, to this nonlinear non-fractional ordinary differential equation. As a result, some new exact solutions to this 

nonlinear problem are successfully constructed such as the elliptic integral function ,F   solutions.  
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1. Introduction 

In the recent years, the fractional differential 

equations play an outstanding role in physics, applied 

mathematics, chemistry and engineering. In some 

sense fractional differential equations could represent 

various real-life problems. However, the effective 

and general method for solving them has not been 

found even in the most useful works. Also, 

remarkable progress has been become in the 

determination of the approximate solutions of 

fractional nonlinear partial differential equations [1, 

3]. So, some new methods in finding of the exact 

solutions to the fractional differential equations have 

been constructed. The exact solutions of these 

problems, when they exist, are very important in the 

understanding of most fractional nonlinear physical 

phenomena. There are important mathematical 

techniques which can be constituted the exact 

solutions for time fractional nonlinear differential 

equations [4-5]. Single kink soliton solutions, 

multiple-soliton solutions, compacton-like solutions, 

singular solitons and other solutions have been found 

by use of these approaches. Apart from all these, 

some new exact solutions have been obtained by 

using the trial equation methods. Some of them are 

elliptic integral functions F, E and Π, Jacobi elliptic 

function solutions.  

In Section 2, primarily we have given some 

definitions and properties of the fractional calculus 

theory and also produce a new trial equation method 

for fractional nonlinear evolution equations with 

higher order nonlinearity. The power of this approach 

shows that it can be applied to different nonlinear 

physical problems. In Section 3, as an application, we 

have solved a fractional nonlinear partial differential 

equation such as the generalized fractional Zakharov-

Kuznetsov equation [6]  

      0, 0, 0 1,
m n r

x xxx yyx

u
a u b u c u t

t







      


  (1) 

where ,a ,b ,c ,m ,n  and r  are real valued 

constants. Also, Eq. (1) is a mathematical model that 

governs the behavior of weakly nonlinear ion 

acoustic waves in plasma comprising cold ions and 

hot isothermal electrons in the presence of a uniform 

magnetic field. Although there are a lot of studies for 

the classical generalized Zakharov-Kuznetsov 

equation and some favorable results have been 

reported, it is seen that detailed studies of the 

nonlinear fractional differential equation are only the 

beginning. Using the new trial equation method, we 

have found some new exact solutions of the 

fractional nonlinear physical problem.  

The purpose of this paper is to obtain exact 

solutions of the generalized fractional Zakharov-

Kuznetsov equations by new extended trial equation 

method, and to determine the accuracy of new 

extended trial equation method in solving these kinds 

of problems.  

 

2. Preliminaries and the new extended trial 

equation method  

In this section of the paper, we give several 

definitions and properties about the theory of 

fractional calculus. In order to obtain more detailed 

information with respect to the fractional calculus, 

we indicate the reader to [1-3]. Apart from this, we 

shortly examine the modified Riemann-Liouville 

fractional derivative defined by Jumarie [7-9]. Let 

 : 0,1f   be a continuous function and 

 0,1 .   The Jumarie’s modified fractional 
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derivative of order α and the function f may be 

defined by expression in [10] as follows: 
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In addition to this definition, we can give 

some basic properties of the modified fractional 

Riemann-Liouville derivative. Some useful formulas 

are given as  
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Some new trial equation methods were 

defined in literature [11-21]. In this paper, a new 

approach to the trial equation method has been given. 

In order to apply this method to fractional nonlinear 

partial differential equations, we consider the 

following steps. 

Step 1. We take the space-time fractional 

partial differential equation in two independent 

variables and a dependent variable u  

  0,,,,, xxxxxxt uuuuDuP  ,         (3) 

and use the wave transformation 
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where 0 . Substituting Eq. (4) into Eq. (3) yields 

a nonlinear ordinary differential equation 

  0,,,,  uuuuN .         (5) 

Step 2. Take the trial equations as follows:  
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and 

       

 22
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u
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where  uF  and  uG  are polynomials. Substituting 

above equations into Eq. (5) yields an algebraic 

equation of polynomial  u  of u : 

  001   uuu s

s  .     (8) 

According to the balance principle, we can get a 

relation between the values of k  and l . Then, we can 

determine some values of k  and l .  

Step 3. Let the coefficients of  u  all 

be zero will yield a system of algebraic equations: 

sii ,,0,0            (9) 

Solving this system, we will specify the values of 

0 , , ka a  and 
lbb ,,0  . 

Step 4. Reduce Eq. (6) to the elementary 

integral form 

 
 
 

du
uF

uG
 0         (10) 

Using a complete discrimination system for 

polynomial to classify the roots of  uF , we solve 

Eq. (10) with the help of MATHEMATICA and 

classify the exact solutions to Eq. (5). Otherwise, we 

can write the traveling wave solutions to Eq. (3), 

respectively. 

 

3. Application to the generalized fractional 

Zakharov-Kuznetsov equation  

Taking m n r   in Eq. (1), we obtain 
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In the case of 1 , Eq. (11) can be 

reduced to the classical nonlinear dispersive KdV 

equation. Using a variety of methods [22-23], many 

authors have tried to find the exact solutions of this 

equation. Compactons, periodic and solitary traveling 

plane waves solutions of this equation have been 

found in the literature. 

              In order to construct the traveling wave 

solutions of Eq. (11), we perform the new wave 

transformation    , , ,u x y t u   

 1

t
x y





  

 
 where   is a constant to be 

determined later. Then, integrating this equation with 

respect to   and setting the integration constant to 

zero, we have 

   0.
n n

b c u au u
            (12) 

By use of the transformation 
1

1 ,nu v              (13) 

Eq. (12) can be transformed into the equation 

           
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Substituting Eqs. (6) and (7) into Eq. (14) and using 

balance principle yield 
2.k l   

By use of the solution procedure, we 

obtain the following results: 

Case 1 

If we take 0l  and 2k  , then  
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where 02 a , 00 b . Thus, we have a system of 

algebraic equations from the coefficients of 

polynomial of .u  Solving the system of nonlinear 

algebraic equation, we get 
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Substituting these coefficients into Eq. (10), we have 
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Integrating Eq. (17), we produce the solutions to the 

Eq. (11) as follows: 

  10 ln   uA ,         (18) 

  210 ln2   uuA ,        (19) 
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Therefore, we find the exact solutions 
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If we take 020   and 
1 1,   then the 

solutions (21) and (22) can reduce to single kink and 

hyperbolic function solutions respectively, 
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where 1/ .B A  Here, B  is the inverse width of the 

solitons. 

Remark 1. The solutions (23) and (24) 

found by using the new trial equation method for Eq. 

(11) have been checked by Mathematica. To our 

knowledge, the hyperbolic function and single kink 

solutions, that we find in this paper, has not been 

shown in the previous literature. These results are 

new traveling wave solutions of Eq. (11). 

           

 

Figure 1. Solution of (21) is shown at 
1

, 0.5,
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where 03 a , 01 b . Respectively, solving the 

system of nonlinear algebraic equations yields  
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Substituting these results into Eq. (10), we have  
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Integrating Eq. (27), we obtain the new solutions to 

the Eq. (11) as follows:  

 
 

,ln2
11

10

1

1

10

0 
























ub

ubb
u

b

ubb
A

(28) 

 
 

  
  

,

ln

arctan
2

2

1

10
12

1210

2110
110

121

0




























































u
b

ubb

ubb

ubb
bb

b

A

(29) 



Life Science Journal 2013; 10(2)                                                          http://www.lifesciencesite.com 

http://www.lifesciencesite.com                              lifesciencej@gmail.com 2704 

 
  

   

   
,

,,

,2

113

110

310211

0 















lnb

lFbb

bbb

A








            (30) 
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Also, the values of 1 , 2  and 3  are the 

roots of the polynomial equation  
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4. Conclusions  

In this article, the new extended trial 

equation method is applied successfully for solving 

the nonlinear fractional differential equations. We 

used it to obtain some soliton and elliptic function 

solutions to the generalized fractional Zakharov-

Kuznetsov equation. The performance of this method 

is reliable and effective, and also this method gives 

more general solutions. We think that the new 

approach proposed in this paper can also be applied 

to other generalized fractional nonlinear differential 

equations. 
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