Life Science Journal 2013;10(2)

http://www.lifesciencesite.com

Exact Solutions of Space-Time Dependent Korteweg-de Vries Equation by The Extended Unified Method

H.I. Abdel-Gawad, Mohamed Osman, Nasser S. Elazab

Department of Mathematics, Faculty of Science, Cairo University, Giza-Egypt
hamdyig@yahoo.com, mofatzi@yahoo.com, nasser.elazab@yahoo.com

Abstract: Recently the unified method for finding traveling wave solutions of nonlinear evolution equations was
proposed by one of the authors. It was shown that, this method unifies all the methods being used to find these
solutions. In this paper, we extend this method to find a class of formal exact solutions to Korteweg-de Vries (KdV)
equation with space-time dependent coefficients. A new class of multiple-soliton or wave trains is obtained.
[Abdel-Gawad H, Osman M, Elazab N. Exact Solutions of Space-Time Dependent Korteweg-de Vries Equation
by The Extended Unified Method. Life Sci J2013;10(2):2598-2604] (ISSN:1097- 8135).

http://www.lifesciencesite.com. 360

Keywords: Exact solution, Extended unified method, Korteweg-de Vries equation, variable coefficients

1 Introduction
We consider the following evolution equation

fxtualal Ou O 0" -0, m=1, (D
T\ o ax v ax T ox T

where f is a polynomial in its arguments. When Eq.

(1) does not depend explicitly on X and ¢, it can be
reduced to a subclass of ordinary differential
equations by using the Lie groups for partial
differential equations [1] or by using similarity
transformations. Among these equations, the
traveling wave has the form

du
g’ u’ . .u™)=0,u"= 2 z=x-ct, (2)
Z

which results due to the translation symmetry of (1).
The Painleve' analysis is used to testing the
integrability of partial differential equations, that was
developed in [2]. Auto-B d cklund transformation
deals with the exact solutions that were obtained for
integrable forms of (2) by truncating Painleve'

expansion [3-9]. Recently auto-B & cklund
transformation that was extrapolated in [10-14] and
the homogeneous balance method in [15-19] assert a
solution for evolution equations with variable
coefficients in the form

(a@)p) 1 (x0),

axm72
where ¢ is the base function.

2 Extended unified method

Explicit solutions of Eq. (2) are, in fact, particular
solutions. In this respect, this solutions are mapped to
other solutions that are given in terms of known
elementary or special functions. Recently in [20] the
class of these solutions were obtained by the
generalized mapping method (GMM). This method
generalizes the results as a polynomial or a rational

u(x,t)=
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function solutions. In the present paper, we extend
this method to handle equations of type (1).

2.1 Polynomial solutions
In this section, we search for polynomial solutions of

Eq.2)in C°(R),
§=1{p:RxR" 5K, ¢/ = F, (4).(4,)" = B ($)},

BL(@)= Y0008 (0.8 (8= Y6 (w08 (5]

ndeed the set S contains elementary or elliptic
functions for some particular values of ¢, p,k] and
k . The mapping method asserts that there exists a
positive integer 7 and a mapping

M:C°R)-»Q, Q= {v,v=iai(x,t)¢i,¢eS} such

that M (u) = P, (¢) and satisfies the properties
M (o, +ayuy) = oy M (u)) + o, M (u,),
Mup,) =M )Muy) M(w, ) =(M(w)),, M(u, ) = (M(w)),

Thus M is a ring homomorphism that conserves
differentiation. By the former conditions we find that,

M(u)=F, ) (#) €QM ) =F, ., (¢) €QBy
using the properties of M and the last results and as
f=f(x,tu,u,,..) is a polynomial in its
arguments, we find that M ( f') is a polynomial and
there exists §, < s such that

M(f)=P (§) €Q.ltis worthy to notice that all

these polynomials have different coefficients. More
simply the mapping M assigns to # and [ gives

two auxiliary equations, the polynomials P, (¢) and
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P (@) respectively. In case of Eq. (1)

s, =n—m+ mk . The utility of the above

presentation helps us to give arguments to the
statements of the conditions in lemmas 2.1 and 2.2.
Also, we think that it allows for constructing more
generalization and it is more appropriate when (1) is
a vector equation.

m

We substitute for ¢, u,,ux,...,a—mu as polynomials
X

in @ , so that the function f is a polynomial in ¢@,
In the
applications we may write directly # = P, (¢), and

together with two auxiliary equations.

f =P. (#). From the previous analysis we may

write
u=>ya(x,0¢,
i=0

where for instance we assume that k, =k , so that

€)

the auxiliary equations are

k k
¢, = b(x,0¢". 4, =D c.(x.0¢', @
i=0 i=0
together with the compatibility equation

¢xt = ¢tx' (5)
We mention that solutions of (4) when exist, are
elementary ( p=¢g =1 ). The case of elliptic

solutions ( p = g = 2) will be considered in a future

work.
When substituting from (3) and (4) into (1) we find

that it is transformed to Pvif '(¢) =0 that gives rise
to

ih, (a, (60.b, (x0).c, (o), (60,4, (x0),.. )¢ =0, (6)
izo 1y =0,1,..n and n,r, =0,..k,.

By equating the coefficients of ¢',i =0,1,...s, to
zero, we get a set of (s, +1) algebraic (or
differential) the
equations, in the functions ai’bi and ¢ ;. On the

equations, namely principle
other hand the equations that result from (5) count:
2k—1, k>2 . We mention that these later

unknown functions count: 7+ 2k +3 .

m

In Eq.(1), if ujux and u are the highest

m

X
nonlinear and the highest order derivative terms
respectively, then we get the balancing condition as
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s, =nj+n+k—-1=n—m+mk . Thus by solving
for n, we find that it depends on m,j and k. The
last result and the number of compatibility equations
namely 2k —1, k> 2 determine if the equations to
be solved are over-determined or under-determined.
The number of the determining equations, balances

the number of unknowns, is over-determined or is
under-determined when the difference, namely
(n—-m+mk+1)+Qk—-1)—(n+2k+3) is
0,>0, <0 this
conditions, we may determine a consistency
condition that will be identified in the lemmas. In
what follows necessary conditions for the existence
of polynomial solutions will be stated.

Lemma 2.1. For polynomial-solutions of (1) (as a
polynomial in @) to exist it is necessary that

(i) (m—1)(k —1)/j(:= n) is a positive integer

(i) m(k—1)—3<m when the equation (1) in the
absence of X, and t passes the Painleve' test .
Otherwise m is replaced by 2.

We notice that the first and the second conditions in

lemma 2.1 are the balancing and the consistency
conditions respectively. For details see [20].

or respectively. From last

2.2 The rational function solutions
Here, also we search for solutions of Eq. (1) in

C*(R) . For rational function-solutions of Eq.(1),
we consider the space of  functions

Qp =W, v="F ()0, (§)p€S} and Q,(¢) has

no zeros in K < R . The definitions in the above and
the GMM for rational function solutions assert that
there exists a mapping

My CP(R)—>Qp, Mpu)=P(#)/0,(§), ¢eS.
The properties of these mapping are the same
properties of the mapping M (1) in section 2.1. By

bearing in mind these properties and from (4), (5) we
find that

Mp(u,)= R,(n—1+k+r) (9)/ Qrz (D)Mp(u,)= f’Z,(n—1+k+r) (9)/ Q:Hl (),
o'u . ,

thus M ,(——)€Qs,i=1,.,m . By using the
ox

properties of M, and the last results, we get

M,(f)€Q, and there exists 5, <§ such that

M ()= Py ($/0"(9) -

on n,r,k and also on m , where in the case

Indeed s, depends
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mentioned in the above s, =n—m+mk +mr .
Simply, we write

u= ia[¢i/id[¢[.
i=0 i=0

So that the Eq. (1) is transformed to PﬁR (#)=0.

(7

Equivalently, the last identity becomes
Sl .
;h,.(a,o (%,0),d, (x,0),b, (x,0),¢, (%,0),....) ¢ =0, (8).

1y =0,...nn,15=0,.,k, and r,=0,..r.
(8), by the of
P = 0,1,...,s, to zero, we get a set of (s, +1)

In equating coefficients

equations that determine the functions a, ’bi’ci and
di . We mention that these later functions count

n+2k+r+3 . By using the same assumptions on
Eq. (1), as in section 2.1, the balancing condition is

)

nj+n+k—1+r=n—m+mk+mr+r(j—(m+1)), m+1<j
{ nj+r((m+1)—j)=n—m+mk+mr=s, m+1>j
Now by solving (9) for 7, we find that it depends on
m,j ,r and k and, in both two cases, we get the
same equation for 7 —7 . Hereafter, we distinguish
between the two cases mentioned in (9). From the
last results and when j <m+1, the number of the
determining equations, balances the number of
unknowns, is over-determined or is under-determined
when the difference, namely

(n—m+mk+rm+1)+(2%k—1)-(m+2k+r+3) s
0,>0,0r<0 respectively. But when j>m+1
this difference is
(n—m+mk+rm+1+r(j—(m+1)))+

k-1)—(n+2k+r+3).

From these last conditions, we may determine the
consistency condition that will be identified in the
following Lemma.

Lemma 2.2. For solitary wave-rational solutions of
Eq. (2) to exist it is necessary that

(i) (m—1)(k—-1)/j(:= n—r) is an integer
(i) r(m-1)+(k—-1)ym-3<m, j<m+l1
r(j—=2)+(k—-1ym—-k—-2<2, j>m+1, inthe

or

case when Eq. (1) passes the Painleve' test.
Otherwise
r(m-1)+(k-1)m-k-2<2, j<m+1 or

r(j—=-2)+(k-1)ym—-k—-2<2, j>m+1.
For details see [20].
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3 Exact solutions of space-time dependent KdV
equation

We consider the following KdV equation with
variable coefficients

u,+ f(x,u_ +g(x,tuu, =0,t>0,x>0,(10)
where f and g are arbitrary functions of x and 7.
For x <0, the solutions of Eq. (10) hold if we
by |x| that

fx,)==f(x,1) and g(-x,1)=—g(x,1) .
We mention that Eq. (10) describes the propagation
of waves in a medium with space-time dependent
dispersion and conviction. In fact, differential
equations with variable coefficients may be of
practical interests. Some exact solutions were
obtained in Nirmala and Vedan [21] and E. Fan [12]
when the coefficients in Eq. (10) are time dependent,

namely f(¢) and g(¢). In these works, solutions

replace X and  assuming

were obtained when f(¢£)=cg(t), where ¢ is a

constant. Under this condition Eq. (10) with time
dependent coefficients can be transformed to a KdV
equation with constant coefficients by using the

transformations 7 = Ig(t)dt , X=X, u=u.In
this case we obtain the well known solutions as
soliton, solitary, or elliptic wave solutions.

3.1 The polynomial function solutions
In lemma 2.1, the consistency condition holds when

k = 2,3 but it does not hold when k >4 . So that,
only the cases k£ = 2,3 will be considered.

- First case: When k= 2,n =2, by substituting
into (3), (4) and (10), we get six principle equations.
We mention that calculations are carried out by using
MATHEMATICA where standard functions in
calculus and algebra were only needed. The steps of
computations are as follows;

Step 1. Solving the principle equations, where five of
them are solved explicitly to

a,(x,t) ==12h(x,t)c; (x,1),
a,(x,t) = —%(Sh(x,z‘)c1 (x,t)c, (x,1)+

¢, (x,0)h (x,t) +5h(x,t)c, (x,t), an
together with explicit equations for b,(x,?) ,
b, (x,t) and b,(x,t) (they are too lengthy to
h(x, l‘)=M
g(x,1)

written  here) where and
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k(x,t) =

. It remains only one unsolved
g(x,7)

equation of the principle ones.

Step 2. We consider the compatibility equations that

result from ¢Xt = ¢lx and they are given formally by;

b6 )G 060 ~-h 66 (60 +6, (1), (61) =0,

2R (x50 (%1)—2b, (6, (5, )+¢, (61)—h, () =0, (12)

—b (506 (60 +h (e () +6, (6 )b, (%,1)=0.

To simplify the computations, we make
transformations

Cbc(xa t) =p(x,t)cz(x, t)pl(x’ t) =_p(x’ t)+q()€, t)o
(13)

the

CO(X,t) _ _2qx(xat)+qz(xat)+4Q)(x’t) ,

46(x%,1)

where C,(x,1),C,(x,?) are arbitrary functions. To

evaluate a,(x,?) the following steps are used.
i- Solve the last equation in (12) for a,,

ii- Eliminate @, ,d,,,.

iii- Substitute in the middle equation in (12) to get
a,(x,t)

iv- Calculate @, from the last step and identify it by

a,, from step (i), we get an equation in C,,C,_,....

As the computations are too lengthy in the general
case, we consider a power law functions

h(x,t) = hy(£)x* Jk(x,1) = ky (£)x” . Now to find
C, , we use the following steps of computations;

v- Solve the equation that result from (iv) in C,,

vi- Substitute into the first equation in (12) and solve
for C,, . Thus (12) solved completely.

vii- Calculate C,

Orx
C

Oxt
equations

from (vi) and balance it with

from (v), we get the following algebraic
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(125p* —=100p° (-10+q)+ p*(1375+750g —
270¢%) —2p(1250-2175 +315¢° +1249° ) +
q(—4250+ 7325 —3622¢% + 547" ) +

1005p° +4q(g 1)+ p9g —5)x’C,(x,0))), (14)

or
(30+5p* + p(25-99) —22g +44°) =0,
or

~-10+21g-14q" +3q” =0,

together with the remaining equation in

the principle ones, which is too lengtly equation to
be written

viii- Calculate C;(x,?) and balance C,, (x,t) with
that one which computed from the step (v)
Case (1): Evaluate C,,(x,?) from equation (14). By

using the step (viii) and by solving the resultant
equation from this step simultaneously with lengtly

(15

(16)

equation, we get a solution only
when p=2,9g=5 and
1
hy(t) = ] , where A, is a constant.
6(h, + j —dp
ko (1)

By solving the second auxiliary equation in (4), we
get P#(x,t) as

2+s(f) Hogx)+x G, 1)(s(f) +Hogx))
e Gx,0) (s(0)+logx))

dx.0)=

, (17)

where s(¢) is an arbitrary function which can be

calculated from the first auxiliary equation in (4).
By a direct calculations, we get the solution of (10) as

iy (18)
h+] ﬁdt)(éso +6log(x) -1 Tlog(h, +f$ dny

u(x,t)=

where S, is a constant.

It is worth noticing that one can verify that the
solution (given by (19)) satisfies (10).

Case (2): From (15) we have g=p+3 or
5(p+2)
= 52+2)
4
() When g = p +3. By using lengtly
equation, we get

lifesciencej@gmail.com




Life Science Journal 2013;10(2)

http://www.lifesciencesite.com

hy(t)= ! , and

200 00+ [ )

Q)(xrt):_

6(=21-4p+ pz)i\/IS(—768+10240+25 1" —106Q)° +481p*)

600c’
By using the step (viii), we find that p =-3, or
p= 16
13
- When p = -3, the solution of (10) is given by

So(8y = 2x(hy + j

d 4
k(@) ) ~(19)

u(x,t)=

4 (hy + j Lo di(s, —

k()

Wh p—l6 t
- en p=—,wege
13

Zﬁ%x (hv0+v0 ! dt+13x”(h+ 701;)464) 20
k(1) (20)
u(x,t)=

29, +I%mdt)232(lk‘3 +2s,(hy +J.k—()dt):24)

Again, the solutions (19) and (20) verify the equation

(10).
5(p+2)
4

(II) When g = . By the same way, we find

that p =§, hy(t)= A, ,and Cy(x,t) =—

Finally, we get

2
u(x,t)= 1972A0x , @D

(9(s, +3x

ko (2 ( )

where A, is a constant.

Case (3): From (3.8), wehave g =1 or g =2.
() When g = 1. By the same way, we

find that p = -2,

hy(t) = 25 and
42(h + k—()dt)
9

Gt = T002

Finally, we get
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u(x,t)=—

7(h, +jmdt)5(4s0 +5x5(h| +jmdz) )

() When g=2 . We find that p=1 ,

A 4
hy(t) = 01 ,Co(x, 1) = 7ol
(h + —a’t)
I ky(?)
In this case, the solutlon of (10) is given by
u(x,t) = —. (23)’

50(h, +J-7dt)(5x5 +35,(h +Iﬁmdt)](‘)2

3
(25(5r +3xs,(hy +fk )dt)”')z
0

3 3
= 2 1 z
78A(,(650x5 —30x° x(,(h] +J-mdt)”‘ —9s2(h, +!mdt)5).

The solutions (21), (22) and (23) verify the equation
(10).
- Second case: When k=3n=4 , and by

substituting into the equation (10), we get eleven
principle equations. We solve eight ones of them to

get a,(x,2),i=1,2,3,4 and b,(x,1),j=0,1,2,3 .
It remains three equations.
Now, the compatibility equations @, = ¢, give rise

to

by (x,t)c,(x,t) = b, (x,t)c,(x,t) +c,, (x,1)
—b,, (x,6) =0, 2b,(x,t)c,(x,t)+c, (x,1)
—2b,(x,t)c,(x,t) = b, (x,1) =0,

b, (x,t)c,(x,t) = b, (x,t)c, (x,t) + b, (x,t)—
3by (x,t)c,(x,8) + 3Dy (x,t)c, (x,t) —

¢, (x,0)=0 , (24)

3b,(x,t)c,(x,t) = 2b,(x,t)c, (x,t) — ¢, (x,8) +

b, (x,t) +b,(x,t)c,(x,t) = b, (x,t)c;(x,t) =0
To solve the equations (24) and those of the principle
ones, we use the following transformations

ch(xﬁt) = Q(x,t)c3 (xat)a
2¢3 (x,1)

¢, (x,t)=2C, (x,t)+ )
1 (x,1) 1 (x,1) 3. (nt)

CO()C,t): CO()C,t) (25)

B 2C; (x,t) +9C, (x,t)c5(x,1)
27¢3 (x,1)
where Q(x,t) , C,(x,t) , and C,(x,t) are

arbitrary functions.

b
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By following the same steps as we did in the first
case and as the computations are too lengthy in the
general case, we consider a power law functions

h(x,t) = hy ()x" k(x,1) = k, (£)x” .
Now we solve (3.17) by using the steps (i)-(viii) and
we get

2¢i(x,t)
O(x,1) = —C,(x,1) + —=—72),  (26)
3c,y(x,1)
) —t—s sJR(p.9) )
25 \[6(25p> +2q(5+q)~ 5p(5-+3))(10(1+ p)~3+30xC, (x, 1)), (x,1) (27)

R(p,q) =5q(-2+3q—¢*)(600+25p> - 75p*(q-3)
—620q +212q° 244" + p(650—440g +744")),
30+25p+5p> —22g-9pg+4q> =0, (28)
and C,(x,t) is arbitrary, while the equation for

a,(x,t) is too lengthy to be written here.
It remains to solve the three equations in the principle

ones.
5(p+2)
—

substituting about

From (28) we have ¢ = p+3 or ¢ =

() When ¢g=p+3 By
g = p +3 in the principle ones, two of them will be

identically zero and the last one of them solves to

()= 2 1

M8—25p—36P2+37PﬁUH+Ik(0

dt)

where /£, is a constant.

By solving the second auxiliary equation in (4), we
get

L)

Jt
J.(zcl (,r,/)+m)dx
e

(29)

3(

ple =280

= + - ,
3¢ (x,0) 2.'.(201 (0)+ ;2 ((X”’)))m‘
A - 2je 3 (x, f)dx

where A(t) is an arbitrary function.

It worth noticing that, in general, the condition
¢, = @, is a necessary condition but not sufficient
in this We that
N N
C(x,0)=Cy(H)x", and c;(x,1) =3 (t)x 2.

The sufficient condition for integrability of auxiliary
equation(4) gives rise to

case. have to assume

C(x,0)= _(130-;}7 ) o (et = \/3(3+f0_5““2) e(0). 30)

From the first auxiliary equation in (4), we evaluate
A(t) . Finally, by a direct calculations we get the
solution of (10) as

http://www.lifesciencesite.com
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12 1 2 1 2
s lia-p _ 5 a-f 5
124,(p—2)'x (h,+I—k0(t)dt) (4y(p-2)x (h,+_[—k0(t)dt) +20x%)

u(x,t)= 5
(1+p)(48—73p+37p2)(Aﬂ(p—2)x%(hl +I%mdt)” 7 +10x%)?
0

_ 18(11+2p?) e P(47+31p%) e
5(48-25p—36p* +37p°)” 5(48-25p-36p2+37p3)’p '
31

We mention that, in (31) p is arbitrary and the
solution (31) verifies the equation (10).

(I1) When g =@. We find that p =2/3,

10 2
h(x,t)= A,x3 ,and k(x,t) =k,(t)x* .
The solution of (10) is given by

38884,0°
28884, (32)

u(x,t)=
(9@0—6w)+5a%jkitdn2

Again, the solution (32) verifies the equation (10).
It is Worthy to notice that the solutions that obtained
in section 3.1 are rational functions in x" for some

s, , but they are not rational in the function ¢@(x,?) .

3.2 The rational function solutions
Here, we seek for rational function-solutions of (10)
where by using the condition (i) in lemma 2.2, we

have two r=nk=1 and
(m—1)(k—1)=n—r. We confine ourselves to the

case when n=r.
In this case the equation (4) becomes as

case;

@ =b(x,t)p+b,(x,t).,0. = c,(x,t)p+c,(x,1), (33)
together with the compatibility equation ¢X[ = ¢lx .
We consider the Eq. (7), without loss of generality
we take d, =1, so that, we may write
u(xt) =a, x t)+‘9m1(¢) >

(34)
_P 1(¢) B n-1 ) n1 )
O D=2 =Qr0B) @ +Dd (6 0P).

00 = 0

Lemma 3.1. a, satisfies KdV equation (10) if and
only if (9,171,” verify the partial differential equation

(0,),+f (6000, ) e+ £x.0,.)0,), +(a,6,,), =0.  (35)
It is worth noticing that for m#1 we have a

generalized B d cklund transformation, but for 7 =1
it is auto-B d cklund transformation.
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Theorem 3.2. When n=1, a rational solution to
(10) exists if and only if f(x,t)=cx’g(x,t),
g(x,t)=xg(t) where C is a constant.

Proof. If f(x,t)=cx’g(x,t), g(x,t)=xg(t),
we use T = Ig(t)dt ,z=Inx, and u=u, thus

(10) becomes a KdV with constant coefficients. It has

a soliton solution in the variable Z =z — k7, k isa
constant. This solution is rational in the exponential
function that satisfies the auxiliary equation (33)

when ¢,, and ¢, are constants. Now, we prove
that if then
f(x,t)=cx’g(x,t) by the converse statement.

a rational solution  exists
We assume that there exists f(x,7) # cx’g(x,1)
and a solution exists when 7 =1, as

r,(x,1)
u(x,t) = a,(x,t) + 6,(9).0,($) = ———"—.
¢+d,(x,t)
For Simplicity we assume that f(x,t)= f,(¢),
g(x,t)=g,(t), and f,()=s(¢)g,(t), so that
a,(x,t) is given by

—12s(¢)

2
X

(36)

X

+E S()= A, + j g, ()dt, (37)

where A, is a constant.

a,(x,t)=

In this case, from the principle equations, namely
those arising from substituting into (35), we get

bl (x,t ),bo (x,t) and two other equations; namely
A1) Ay (1) +dy (2, )B(x.0) = 0.4 (B, (x0) +B(x,1) =0, (38)

A(x,t) = c,(x,t)—dy(x,0)c,(x,0) +d,, (x,8) = A (x,1) —d(x,1) B(x,1),
where A,(x,t) , B,(x,t) , and B(x,t) are
functions in doaroacoacladowdo):x""

(38) has the unique solution A(x,7) = 0. So that the
auxiliary equations (34) has the solution

. The equation

o (r)dx
P(x,0)+dy(x,0)=c, e
Where, ¢, is a constant.
Thus, no rational solution exists (Cf.(36),) unless
f()=cg().

For n > 2, computations are too lengthy and they
will be considered in a future work.

(39)

4 Conclusions
In this paper, we suggested an extended unified
method for finding exact solutions to evolution
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equations with variable coefficients. A wide class of
exact solutions to KdV equation with Space-time
dependent coefficients is obtained. The method and
the solutions that we obtained here are completely
new and we can use this method to find exact
solutions of coupled evolution equations. But in this
case we think that parallel computations should be
used.
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