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Abstract: In this paper an Improved Water Swirl Algorithm (IWSA) approach is used for formulation of lower 

order Multi Input Multi Output (MIMO) model for a given absolutely stable higher order MIMO Continuous system 

in transfer function form. Water Swirl Algorithm (WSA) is a swarm based optimization technique that mimics the 

way by which water finds a drain in a sink. It observes the flowing and searching behavior of water for drain and 

proposes a suitable strength update equations to locate the optimum solution iteratively from the initial randomly 

generated search space. The strength of a water particle is governed by three components namely, Inertia, Cognitive 

and Social. In the proposed Improved WSA, the cognitive component of water particle is spitted into good 

experience component and worst experience component. Due to the inclusion of worst experience component, the 

particle can bypass the previously visited worst position and try to occupy the best position. A weighted average 

method is proposed in this paper to reduce the higher order model formulation to lower order form. Integral square 

error is used as an indicator for selecting the lower order model. An average scheme has been proposed for 

commonizing the denominators of the individual lower order approximants so that a lower order MIMO model can 

be declared in the transfer function matrix form. The proposed methodology is illustrated with an example. 
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1. Introduction 

 For many modern control schemes, such as 

optimal or H based control, it is usually required to 

perform plant model or controller order reduction 

prior to or during the process of design. The order 

reduction problem is the problem of approximating, 

as closely as possible, the dynamics of a higher order 

system by a reduced order linear time invariant 

system model, while retaining the important 

structural and dynamic properties of the original 

system. It is usually a multimodal optimization 

problem in a multidimensional space. 

 Recently, systems have become complex 

and the interrelationship of many controlled variables 

need to be considered in the design process. The 

computer control systems used to control the fighter 

aircrafts, fuel injectors and spark timing of 

automobiles is excellent examples of such 

multivariable control systems. These MIMO systems 

are challenging when compared to the analysis of 

single input-single output (SISO) systems. The exact 

analysis of higher order MIMO systems are often 

difficult due to computational considerations, which 

further emphasizes the importance of formulating 

lower order models. 

 During the past three decades, several model 

reduction methods have been developed by various 

authors [1-5]. Each of them has its own merits and 

applications. Extensions of these SISO techniques for 

MIMO systems are not trivial and most of the 

approaches yield poor approximants [6-7]. Levy [8] 

established a complex curve fitting technique to 

minimize quadratic errors of a single input and single 

output transfer function. This was later formalized by 

Elliott and Wolovich [9] and extended to MIMO 

systems [10]. Recently, mixed methods [11-13] are 

achieving great attention in the model reduction of 

MIMO systems. In these methods, the common 

denominator characteristic equation of the transfer 

function of the reduced model is fixed by using a 

stability preserving algebraic method, while the 

numerators are obtained using one of the available 

model reduction methods. 

Most problems in this area are heuristics in 

nature which can find good solution in a reasonable 

amount of time.  Heuristics are rules to search for 

optimal or near-optimal solutions. Some of the 

heuristic tools include Simulated Annealing (SA), 

Ant Colony Optimization, Evolutionary Computation 

methods like Genetic Algorithm, Fuzzy Logic, 

Neural Networks etc., [14-15] and Swarm 

Intelligence techniques like Particle swarm 

Optimization, Water Swirl Algorithm etc., In this 

paper, novel attempt is made to simulate the motion 

of water in the sink is presented. This behaviour of 

water is studied by Menser and Hereford [16] as 

Water Swirl Algorithm based on the method of fluid 

flow around a drain. In the proposed Improved Water 
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Swirl Algorithm, the search behaviour of water for 

drains and proposes suitable update equation to locate 

the optimum solution iteratively from the initial 

randomly generated search space. 

This paper presents an average scheme for 

the formulation of initial second order MIMO model 

for a given absolutely stable linear time invariant 

higher order MIMO continuous system. An IWSA 

for modifying the characteristics of the initially 

formulated lower order model has been proposed 

based on the Transient Gain (TG) and Steady State 

Gain (SSG). This methodology results in a lower 

order model that closely matches the characteristics 

of the given higher order systems. The integral square 

error is used as an indicator for this purpose. The 

algorithm presented in this paper requires the higher 

order MIMO system to be represented in the form of 

a transfer function matrix. Leverrier algorithm [17] 

can be used to find the transfer function matrix, if the 

given system is in the state-space form. 

 The rest of the paper is organized as follows: 

Section 2 gives the problem definition; Section 3 

deals an overview of WSA, Section 4 on proposed 

IWSA and our proposed methodology for MIMO 

system in Section 5. Numerical example is presented 

in Section 6, which is followed by discussion of the 

results in Section 7. Section 8 presents a conclusion. 

 

2. Problem Definition 

 Consider an nth order linear time invariant 

dynamic multivariable system with q inputs and r 

outputs described in time domain by state space 

equations as, 

)()(
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tButAxx
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   (1) 

where x  is n dimensional state vector, u is q 

dimensional control vector and y is r dimensional 

output vector with q  n and r  n. Also, A in n  n 

system matrix, B is n  q input matrix and C is r n 

output matrix.  

 Alternatively, equation (1) can be described 

in frequency domain by the transfer function matrix 

of order r  q as, 
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where N(s) is the numerator matrix 

polynomial and D(s) is the common denominator 

polynomial of the higher order system. Also, Ai and 

ai are the constant matrices of numerator and 

denominator polynomial respectively. 

 Irrespective of the form represented in 

equation (1) or (2) of the original system G(s), the 

problem is to find a mth order reduced model Rm(s), 

where m< n in the following form represented by 

equation (3), such that the reduced model retains the 

important characteristics of the original system and 

approximates its response as closely as possible for 

the same type of inputs with minimum integral 

square error.  
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where, Nm(s) and Dm(s) are the numerator 

matrix polynomial and common denominator of the 

reduced order model respectively. Also, Bi and bi are 

the constant matrices of numerator and denominator 

polynomial of the same order respectively. 

  Mathematically, the integral square error 

[18] can be expressed as, 
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where, Yt is the unit step time response of 

the given higher order system at the tth instant in the 

time interval 0 t , where  is to be chosen and yt is 

the unit step time response of the lower order system 

at the tth time instant.  

 The objective is to find Rm(s), which closely 

approximates G(s) for a specified set of inputs.    

 

3.Overview Of Water Swirl Algorithm 
Water Swirl Algorithm is a swarm based 

optimization technique that mimics the way by which 

water finds a drain in a sink. This algorithm considers 

a certain number of water particles that represents the 

number of possible solutions for a variable in the 

search space. The sink holding the water particle 

represents the boundary conditions limiting the 

search space.  

Water is an inevitable substance in the 

nature for all the livings. Water has peculiar 

characteristics that when it is poured or contained in a 

sink, it tries to find the drain (hole) in the sink 

continuously to leave out. The answer for this 

excellent natural behaviour of water can be found in 

the field of Fluid Dynamics [19] that deals with the 

nature of fluid flow.  

When the drain of the sink is opened, a 

swirling motion is started in the water mass near the 

drain leading to the release of water though the drain. 

The swirl motion of water leads to an important 

phenomenon called vortex formation as depicted in 

Figure 1. [20]. 
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Figure 1: Illustration of Vortex Ring 

During swirling motion, the vortex is not 

stationary, but rather continually moves towards the 

highest value in the search space. Since the particles 

are drawn towards the vortex, the search is 

concentrated in areas that have previously yielded 

good results (Previous Best). The drain would signify 

the best among the previous best known as the Global 

Best. Water particles exist for a certain amount of 

time, or iterations, and update the previous and global 

best position until an overall best solution is found. In 

view of this, strength update equation (5) and 

position update equation (6) are modified as below: 

   new old q,ref prevBest q,ref q,ref gBest p,oldx x x x       
(5) 

 p,new new q,ref p,old q,refx x x    
 (6) 

      Here xq,ref  is randomly generated using the 

range given for the solution variable. refq,
is a 

random number generated between zero and one. 

old
and new  are the strength vectors of water 

particles at ith and (i+1)th iterations respectively. 

Similarly, oldpx ,  and newpx ,  are the positions of 

water particles at ith and (i+1)th iterations. 

refqx , , prevBestx
   and gBestx

denotes the reference 

position, previous best position and global best 

position of the water particle respectively. 

The solution search equation (5) for updating 

particle strength has well balanced exploration and 

exploitation abilities. Even though it resembles the 

velocity updating equation of PSO, the use of 

reference position xq,ref  in second term performs very 

well in exploration. The generation of strength vector 

‘α’ within the actual range of the variable avoids the 

problem of velocity clamping. There is no weight ‘w’ 

and parameters ‘c1’ and ‘c2’ in this search equation 

and it is completely parameter free.  

While updating strength of a particle using (6), 

different variables have different value that provides 

larger search space and makes WSA always perform 

better due to independent updating of each variable. 

The position update equation given in (6) performs a 

local selection task by using new strength vector and 

reference position xq,ref  for determining the next 

adjacent position around the vortex ring.  

 

4. Proposed Improved Water Swirl Algorithm 

In the new proposed Improved water swirl 

algorithm, the strength update equation is splitted 

into three components namely inertia, cognitive and 

social component. The cognitive component is 

splitted into two components. The first component is 

good experience component which refers to the 

previously visited good position of the water particle 

and second component is worst experience 

component which refers to the previously visited 

worst position of the water particle. Due to the 

inclusion of worst experience component in the 

strength update equation, the particle can bypass the 

previously visited worst position and try to occupy 

the best position.  

The modified strength update equation (7) is 

given by 
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Here  xq,ref  is randomly generated using the 

range given for the solution variable. refq,
is a 

random number generated between zero and one. 

old
and new

 are the strength vectors of water 

particles at ith and (i+1)th  iterations respectively. 

Similarly, oldpx ,  and newpx ,  are the positions of 

water particles at ith and (i+1)th  iterations. 

refqx , , prevBestx
, gBestx

worstBestx
denotes the reference 

position, previous best position, global best position 

of the water particle and previous worst position 

respectively.  

The algorithmic steps for the proposed 

Improved WSA are as follows: 

Step1: Select the number of water particles, range 

of water particle and maximum iterations 

Step2:  Init ialize the particle position and strength. 

Step3: For each water particle (xp), evaluate fitness 

function using equation (4) 

Step4: Select the particle global best value and the 

particles individual worst value.   

Step 5: Compare the fitness value of (xp) with 

fitness value of (xprevBest). If it is greater value, then set 

xprevBest as xp. Otherwise, go to Step 3 for evaluating 

fitness value. 
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Step6: Update the particle individual best (XprevBest), 

global best (XgBest) and particle worst (XworstBest)   in 

the strength update equation (7) and obtain the 

position of the particle. 

Step 7: The optimal solution is obtained when the 

integral square error is minimum.  

Step 8: Stop  

 

The proposed Improved WSA starts with the 

initialization of control parameters like Number of 

Water Particles (‘N’), Boundary or range of each 

water particle (‘B’) and the maximum iterations (‘I’). 

Then the initial position, reference position and the 

strength of the water particle are randomly generated 

within the actual range of each particle. Fitness of 

each water particle is evaluated.  

Until all the water particle exhaust, update the 

previous best (prevBest), previous worst (worstBest) 

and set the best of prevBest as global best (gBest). 

Then the strength and position of the water particle 

are updated using equation (7) and (6) respectively 

until the maximum iteration is reached. At last, the 

final gBest value is returned as an optimal solution. 

 

5. Proposed Methodology 

 The various steps involved in the proposed 

scheme are as follows: 

Step 1: Consider the given transfer function matrix 

of the multivariable system as, 



























)s(G...)s(G)s(G

.

.

.

.

.

.

.

.

.

)s(G...)s(G)s(G

)s(G...)s(G)s(G

)s(G

qr2q1q

r22221

r11211

 (8)  

where, 










n

k

k

k

n

k

k

k

ij

ij

sjia

sjiA

sD

sN
sG

0

1

0

),(

),(

)(

)(
)(

 with  

i = 1,2,…, q and j = 1,2,…,r. 

 Take common denominator D(s) for the 

given G(s), then the transfer function of the system 

can be represented in the matrix form as: 
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Step 2: For each Gij(s) do the following, 

Step 2.1: From equation (9) we can write, 
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Step 2.2: Compute the transient gain (TGij) and 

steady state gain (SSGij) of Gij(s) in equation (10) as 

follows: 

n
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Step 2.3: Apply average scheme [Appendix I] to 

obtain an approximate lower order model of order m 

using the coefficients of numerator polynomial of 

each Gij(s) and common denominator polynomial 

D(s). For each Gij(s) of order n, lower order models 

of order 2, 3, (n-1) can be generated. 

 For simplicity and without loss of generality, 

the approximate lower order model to be formulated 

is assumed to be of order 2, (i.e., m=2) in equation 

(13). Thus the transfer function matrix of 

approximate second order model using auxiliary 

scheme is given by, 
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Step 2.4: Scaling equation (13), we get, 
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Step 2.5: Tuning equation (14) to maintain the 

transient gain and steady state gain obtained in 

equations (11) and (12), we get, the approximated 

second order model as,  
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Comparing equations (13) and (15), it can be noted, 
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Step 2.6: The coefficients of the approximated 

second order model Rij(s) in equation (15) are fed as 

input to proposed improved water swirl algorithm 

process. The main aim of proposed IWSA is to 

minimize the objective function integral square error. 

The integral square error is computed as in equation 

(4). The proposed IWSA algorithm [Section IV] is 

invoked to search the better values of 

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 in equation (15), so that the characteristics of 

the formulated second order model matches the given 

higher order system. The proposed IWSA is carried 

out within the constraint of maintaining the transient 

and steady state gain of the second order model in 

accord with that of the given higher order system 

calculated in equations (11) and (12). 

Step 2.7: The transfer function of the lower second 

order model corresponding to the minimum integral 

square error using proposed IWSA of each Gij(s) is 

given by, 
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where i=1,2,…, q and j=1,2,…, r.  

Step 3: Obtain the common denominator Dm(s) of 

the lower order model as the average of the 

corresponding coefficients of each 
)s(D

m
ij

 from 

equation (17), which is mathematically expressed as, 
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k=0, 1 with reference to equation (18). 

Step 4: Reconstruct the numerators of each Rij(s) 

with, 
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so that the characteristics of the original higher 

order system are maintained in the formulated lower 

order model. 

Comparing equations (17) and (20), it can be noted, 
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Step 5: The transfer function matrix of the lower 

order system of order m can now be represented as,   
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Step 6: Calculate the integral square error for the 

obtained lower order model in equation (22) and the 

given higher order system in (8) and tabulate it. 

The proposed methodology is illustrated with 

a numerical example in the forthcoming section. 

 

6. Numerical Example 

 The proposed procedure is applied to linear 

time invariant multivariable continuous system as 

follows. 

Step 1: Consider the given sixth order system [21] 

described by the transfer function matrix, 
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The common denominator D(s) for the given 

G(s) in equation (23) is, 
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Step 2: For each G(s) do the following,  

Step 2.1: Now G(s) can be represented as, 
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Step 2.2: Table 1 gives the transient gain ratio 

(TGij) and steady state gain ratio (SSGij) computed for 

G11(s), G12(s), G21(s) and G22(s) represented in 

equations (26) through (29). 

TABLE I.TRANSIENT GAIN AND STEADY 

STATE GAIN FOR G11(S), G12(S), G21(S) AND 

G22(S) 

Transfer function Transient Gain Ratio 

Steady State Gain 

   TGij  Ratio SSGij 

 

 G11(s) 2
1

2
    1

6000

6000
  

 G12(s) 1
1

1
    4.0

6000

2400
  

 G21(s) 1
1

1
  5.0

6000

3000
  

 G22(s) 1
1

1
    1

6000

6000
  

 

Step 2.3: Applying Average scheme to obtain the 

initial lower second order models R11(s), R12(s), R21(s) 

and R22(s) for the corresponding G11(s), G12(s), G21(s) 

and G22(s) represented in equations (26) through (29), 

we get, 

6000s13100s10060

6000s7700
)s(R

211





 (30) 
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6000s13100s10060

2400s4160
)s(R

212





 (31) 

6000s13100s10060

3000s3700
)s(R

221





 (32) 

6000s13100s10060

6000s9100
)s(R

222





 (33) 

Step 2.4: Scaling equations (30) through (33) we 

get, 

5964.0s3022.1s

7792.0s
)s(R

211





  (34) 

5964.0s3022.1s

5769.0s
)s(R

212





  (35) 

5964.0s3022.1s

8108.0s
)s(R

221





  (36) 

5964.0s3022.1s

6593.0s
)s(R

222





  (37) 

Step 2.5: Tuning the equation (34) through (37) to 

maintain the transient gain ratio and steady state gain 

ratio of G11(s), G12(s), G21(s) and G22(s) as shown in 

Table 1, we get the second order model as, 

5964.0s3022.1s

5964.0s2
)s(R

211





  (38) 

5964.0s3022.1s

2386.0s
)s(R

212





  (39) 

5964.0s3022.1s

2982.0s
)s(R

221





  (40) 

5964.0s3022.1s

5964.0s
)s(R

222





  (41) 

 Step 2.6: The proposed improved water swirl 

algorithm is now invoked to search the values of s-

term (1.3022) and constant term (0.5964) of the 

denominator in R11(s), R12(s), R21(s) and R22(s) 

represented by equation (38) through (41), so that the 

characteristics of second order model matches the 

given higher order system given by equations (26) 

through (29). The proposed IWSA is performed 

within the constraint of maintaining the transient and 

steady state gain of the lower second order model in 

accord with that of the given higher order system as 

shown in Table 1. Proposed IWSA determines a 

better-reduced second order model for which the 

integral square error is minimal, using its algorithm 

in Section IV. 

Step 2.7: The transfer function of the second order 

models obtained using proposed IWSA searching 

process are given by, 

0648.10s0537.11s

0648.10s2

)s(D

)s(N
)s(R

2
11

11
11






(42) 

4128.6s3858.5s

5651.2s

)s(D

)s(N
)s(R

2
12

12
12






(43) 

6293.19s6362.20s

8146.9s

)s(D

)s(N
)s(R

2
21

21
21






(44) 

9849.5s9928.4s

9849.5s

)s(D

)s(N
)s(R

2
22

22
22






(45) 

The IWSA searching process for second 

order model formulation is carried out maintaining 

the transient gain and steady state gain ratio of given 

higher order system. 

Step 3: Obtaining the common denominator D2(s) 

of the lower second order model as the average of the 

corresponding coefficients of D11(s), D12(s), D21(s) 

and D22(s), we get,  








 








 











4

9849.56293.194128.60648.10

s
4

9928.46362.203858.50537.11
s

4

4
)s(D

22

5229.10s5171.10s)s(D
22


 (46) 

Step 4: Using the transient gain ratio and steady 

state gain ratio of G11(s), G12(s), G21(s) and G22(s) 

shown in Table 1 and D2(s), the transfer function 

represented in equations (42) through (45) can be 

reconstructed as, 

10.522910.5171ss

10.53192s
(s)R

211





 (47) 

5229.105171.10

1096.4
)(

212





ss

s
sR

 (48) 

5229.105171.10

1034.5
)(

221





ss

s
sR

 (49) 

5229.105171.10

0193.10
)(

222





ss

s
sR

 (50) 

Step 5: The second order MIMO model in 

transfer function matrix is, 











)s(R)s(R

)s(R)s(R
)s(G

2221

12112

 

 














0193.101034.5

1096.45319.102

)(

1
2 ss

ss

sD (51) 

where
5229.10s5171.10s)s(D

22


 

Step 6: The unit step time responses of the 

given higher order system, the proposed second order 

system and that of the second order systems obtained 

using other known methods are shown in Figure 2 – 

Figure 5. The integral square errors computed are 

shown in Table 2. 
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Figure 2:   Unit step response curves for G11(s) 

 

 
Figure 3: Unit step response curves for G12(s) 

 

 
Figure 4: Unit step response curves for G21(s) 

 
Figure 5: Unit step response curves for G22(s) 

 

TABLE II 

COMPARISON OF INTEGRAL SQUARE 

ERROR FOR ILLUSTRATION 

 
Model Reduction  Integral Square Error E for 10 seconds 

     Method  

  G11(s)  G12(s)  G21(s)  G22(s) 

   

R.Prasad, J.Pal& 0.3068 3.8578 0.7170 0.2168 

A.K.pant [22] 

  

R.Prasad [23] 0.2301 0.0887 0.0468 0.2114 

 

R.Prasad,  

S.P.Sharma& 0.1676 0.0955 0.0307 0.1970 

A.K.Mittal [24] 

 

Proposed Method 0.0117 0.0424 0.0125 0.1621 

 

It is observed from Table 2 that the proposed 

scheme yields better value for integral square error 

with respect to other methods considered for 

comparison. 

 

7. Discussion 

 The salient points noted in the illustration 

are discussed here. The given illustration deals with a 

sixth order linear time invariant multivariable 

continuous system. The analysis is carried out in s-

domain and the lower order MIMO model for the 

individual transfer functions of the MIMO transfer 

function matrix are formulated using the proposed 

auxiliary scheme. Then proposed IWSA is invoked to 

search for the better lower order model minimizing 

the integral square error with the constraint of 

maintaining the transient and steady state gain of the 

given higher order system. Further, an average 

procedure is used to obtain the common denominator 

for the lower order transfer function matrix. The 
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illustration indicates that the characteristics of the 

formulated lower second order model closely follow 

that of the given higher order system. Table 2 reveals 

that the proposed scheme yields better value for 

integral square error in comparison with other 

techniques [21-23]. Figure 2-5 depicts that the unit 

step time response of the proposed lower second 

order system maintains the original characteristics of 

the given sixth order system. 

 The proposed IWSA algorithm is coded in 

Intel Pentium Processor 4.0, 2.8 GHz, 256 MB RAM 

and it took 16 seconds by the CPU for the complete 

simulation of 120 generations. 

 

8. Conclusion 

 It has been established that the proposed 

approach is suitable for formulating a lower order 

MIMO model that retains the characteristic features 

of a given absolutely stable higher order linear time 

invariant MIMO continuous system. The lower order 

MIMO model for the individual transfer functions of 

the MIMO transfer function matrix are formulated 

using the proposed average approach and the 

parameters transient gain and steady state gain. The 

proposed IWSA systematically searches for the 

global optimum solution for the parameters of lower 

order model. The IWSA approach helps in 

minimizing the integral square error of the 

formulated lower order model with respect to the 

given higher order system. The advantage of this 

approach is that it guarantees an absolutely stable 

lower order model provided the given original higher 

order system is absolutely stable. This approach can 

also be extended for well-known discrete system 

problems. The obtained lower order model can be 

further used for designing suitable controllers and 

state space observers for the given higher order 

system. 
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