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Abstract: The major tissues with in a Brain are identified by Magnetic resonance imaging (MRI) based on nuclear 
magnetic response MRI is a non invasive method for imaging. A intelligent optimization technique to identify 
normal and abnormal slices of brain MRI data. The manual interpretation of tumor slices based on visual 
examination by Radiologist/physician may lead to missing diagnosis when a large number of MRIs are analyzed. To 
avoid the human error, an automatic Bayesian optimization system is proposed which caters the need for 
optimization of image slices after identifying abnormal MRI volume, for tumor identification. In this research work, 
advanced optimization techniques based on Hybrid Genetic Algorithm Support Vector Machines (Hybrid GA-SVM) 
are proposed and applied to brain image slices optimization using features selection from slices. From this analysis, 
it is observed that the proposed method using Hybrid GA-SVM optimizer outperformed all other existing 
methodologies. 
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1. Introduction 

Brain is the kernel part of the body. Brain 
has a very complex structure. Brain is hidden from 
direct view by the protective skull. This skull gives 
brain protection from injuries. Brain can be affected 
by a problem which cause change in its normal 
structure and its normal behavior .This problem is 
known as brain tumor. Brain tumor causes the 
abnormal growth of the cells in the brain. The cells 
which supplies the brain in the arteries are tightly 
bound together thereby routine laboratory test are 
inadequate to analyze the chemistry of brain. 
Computed tomography and magnetic resonance 
imaging are two imaging modalities that allow the 
doctors and researchers to study the brain by looking 
at the brain non-invasively. 

  The field of medical imaging gains its 
importance with increase in the need of automated 
and efficient diagnosis in a short period of time. 
Computer and Information Technology are very 
much useful in medical image processing, medical 
analysis and optimization. Medical images are 
usually obtained by X-rays and recent years by 
Magnetic Resonance (MR) imaging. Magnetic 
Resonance Imaging (MRI) is used as a valuable tool 
in the clinical and surgical environment because of its 
characteristics like superior soft tissue differentiation, 
high spatial resolution and contrast. It does not use 
harmful ionizing radiation to patients. 

  Magnetic Resonance Imaging (MRI) is a 
medical imaging technique. Radiologist used it for 
the visualization of the internal structure of the body. 

MRI provides rich information about human soft 
tissues anatomy.MRI helps for diagnosis of the brain 
tumor. Images obtained by the MRI are used for 
analyzing and studying the behavior of the brain. 
Image intensity in MRI depends upon four 
parameters. One is proton density (PD) which is 
determined by the relative concentration of water 
molecules. Other three parameters are T1, T2, and 
T2* relaxation, which reflect different features of the 
local environment of individual protons. Ones the 
brain images acquired they are optimized as normal 
and abnormal. For optimization of the images 
different features of the image are extracted. These 
features are used for optimizing the brain MR image 
as normal and abnormal. The sensitivity of the human 
eye in interpreting large numbers of images decreases 
with increasing number of cases, particularly when 
only a small number of slices are affected. The MRI 
may contain both normal slices and defective slices. 
The defective or abnormal slices are identified and 
separated from the normal slices and then these 
defective slices are further investigated for the 
detection of tumor tissues.  

  Brain MRI in which an SVM optimizer 
was used for normal and abnormal slices 
optimization with statistical features. The latest 
development in data optimization research has 
focused more Hybrid GA (SVM) Support Vector 
Machines because several recent studies have 
reported that Hybrid GA-SVM generally is able to 
deliver higher optimization accuracy than the other 
existing data optimization algorithms. The 
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categorization of slices into normal and abnormal is 
done using statistical features of images such as 
mean, variance, and co occurrence based textural 
features of images such as energy, entropy, difference 
moment, inverse difference moment and correlation. 
For comparative analysis, SVM Optimizer with linear 
and nonlinear type of kernels, the RBF, MLP and K-
NN optimizers are also implemented using the same 
data sets. The motivation behind this paper is to 
develop a machine optimization process for 
evaluating the optimization performance of different 
optimizers to this problem in terms of statistical 
performance measure. 

  The motivation behind this paper is to 
develop a machine optimization process for 
evaluating the optimization performance of different 
optimizers to this problem in terms of statistical 
performance measure. Our proposed technique is 
fully automatic and robust. No prior knowledge of 
the image is required about its feature, contents, type 
and model. Proposed system is very accurate system 
for diagnosing the brain tumor. 
2. Material and Methods  
2.1 Image MRI 

Magnetic Resonance Imaging (MRI) uses 
magnetic energy and radio waves to create images 
(“slices”) of the human body. MR imaging measures 
the magnetic properties of nuclei within the body 
tissues. The energy absorbed by the nuclei is then 
released, returning the nuclei to their initial state of 
equilibrium and this transmission of energy by the 
nuclei is observed as the MRI signal. MR images are 
generated by the resonating nuclei for each spatial 
location. The image gray level in MRI mainly 
depends on three tissue parameters viz., proton 
density (PD), spin-lattice (T1) and spin-spin (T2) 
relaxation time [22]. Generally, for most of the soft 
tissues in the body, the proton density is very 
homogenous but may exhibit higher intensity for gray 
matter. T1 and T2 are sensitive to the local 
environment; they are used to characterize different 
tissue types. T1, T2 and PD type images are mostly 
used by different researchers [23, 24] for different 
MR applications. 
2.2 Feature GLCM 

  A number of texture features may be extracted 
from the GLCM We use the following notation: G is 
the number of gray levels used. μ is the mean value 

of P. μx, μy, x and yare the means and standard 
deviations of Px and Py. Px(i) is the ith entry in the 
marginal-probability matrix obtained by summing the 
rows of P(i, j) 
 

Px(i)= Py(j)=  

�x= = Px(i) 

�y= = Py(j) 

�2
x= (i-�x)

2 = (Px(i)-�x(i))
2 

�2
y= (j-�y)

2 = (Py(j)-�y(j))
2 

and 

Px+y(k)=  
i+j=k 
for  k=0,1,….,2(G-1) 

Px-y(k)=  
i-j=k 
for k=0,1….,G-1 
The following features are used 
Homogeneity, Angular Second Moment (ASM) 
 

ASM= 2 

  ASM is a measure of homogeneity of an image. A 
homogeneous scene will contain only a few gray 
levels, giving a GLCM with only a few but relatively 
high values of P(i, j). Thus, the sum of squares will 
be high. 
Contrast 

CONTRAST = n2{ },∣i-j∣=n 
  This measure of contrast or local intensity variation 
will favour contributions from P(i, j) away from the 

diagonal, i.e. i  j. 
 
Local Homogeneity, Inverse Difference Moment 
(IDM)  

IDM=  
  IDM is also influenced by the homogeneity of the 
image. Because of the weighting factor (1+(i−j)2)−1 
IDM will get small contributions from 

inhomogeneous areas (i j). The result is a low IDM 
value for inhomogeneous images, and a relatively 
higher value for homogeneous images. 
Entropy   

ENTROPY=-  
  Inhomogeneous scenes have low first order entropy, 
while a homogeneous scene has high entropy. 
 
Correlation  

CORRELATION=  
 
       Correlation is a measure of gray level linear 
dependence between the pixels at the specified 
positions relative to each other. 
Sum of Squares, Variance 
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VARIANCE= 2 P(i,j) 
  This feature puts relatively high weights on the 
elements that differ from the average value of P (i, j). 
 
Sum Average 
 

AVER= x+y(i) 
 
Sum Entropy 
 

SENT= - x+y(i) x+y(i)) 
 
Difference Entropy 
 

DENT= - x+y(i) x+y(i)) 
 
Inertia  
 

INERTIA= 2 P(i,j) 
 
Cluster Shade  
 

SHADE= x y}
3 P(i,j) 

 
Cluster Prominence 
 

PROM = x y}
4 P(i,j) 

 
2.3 Feature Selection 

a. Genetic Algorithm 
  GA is represented by a chromosome and the 

GA keeps a set (population) of chromosomes. Each 
element of a chromosome is referred to as a gene. 
The population evolves through a number of 
generations. Each generation is performed as follows. 
First, two solutions are selected in the population 
based on a certain probability distribution; they are 
called parent chromosomes. Then, the crossover 
operation produces an offspring chromosome by 
combining the parents. The mutation operation then 
modifies the offspring chromosome with a low 
probability. The offspring can be locally improved by 
any other algorithm or heuristic. A generation is 
completed by replacing one of the members in the 
population with the offspring. A considerable number 
of generations are run until a user-defined 
convergence criterion is reached.  

Finally, the GA returns the optimized parameters 
or variables in the population as the solution [11]. 
 

b. Support Vector Machine 
 

 
Figure 1. Fitness calculation 

 
     SVMs are a set a novel machine learning methods 
for optimization and regression. In SVM, training is 
performed in a way such to obtain a quadratic 
programming (QP) problem. The solution to this QP 
problem is global and unique.  For Empirical data 

1,�1),…,(�m,�m) £ Rn   {-1,+1} that are mapped 
by φ:Rn→F into a “feature space”, the linear hyper 
planes that divide them into two labeled classes can 
be mathematically  represented as: 
 

 £ n, b£ℜ                     (1) 
 
To construct an optimal hyper plane with maximum-
marginand bounded error in the training data (soft 
margin), the following QP problem is to be solved: 
 

minw,b ∣w∣
2+C i 

�i i,           (2) 
 

The first term in cost function (2) makes 
maximum margin of separation between classes, and 
the second term provides an upper bound for the error 

in the training data. The constant C  [0,∞) creates a 
tradeoff between the number of optimized samples in 
the training set and separation of the rest samples 
with maximum margin. A way to solve (2) is via its 
Lagrange function. Given a kernel 

i, j)= i). j) the Lagrange function of (2) is 
simplified to: 

max i i j i�jK i, j)          (3) 
  

i i i), i�i=0,  0 i ,  i       (4)    
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From eq. (1) it is seen that the optimal hyper plane in 
the feature space can be written as the linear 

combination of training samples with i . These 
informative samples, known as support vectors, 
construct the decision function of the optimizer based 
on the kernel function: 

 

f(x)=sgn{ i i j)+b                         (5) 
 

Kernel functions in SVMs are selected based on the 
data structure and type of the boundaries between the 
classes. The representative and widely applied kernel 
function based on Euclidean distance is the radial 
basis function (RBF) kernel, also known as the 
Gaussian kernel [13]: 

 

KRBF (xi , xj)=exp( ∣ i j∣
2)                 (6) 

 

Where  is the RBF kernel parameter. The RBF 
kernel induces an infinite-dimensional kernel space, 
in which all image vectors have the same norm, and 

the kernel width parameter  controls the scaling of 
the mapping [13]. This paper employs LIBSVM [14], 

a library for support vector machines, as the core 
SVM optimizer and conducts multiclass optimization 

using the “One Against One” or OAO method. 
 

c. GA Optimization 
   A hybrid approach of GA-SVM is used to 
globally optimize SVM hyper-parameters for the 
following Dual Lagrangian Optimization (DLO) 
problem: 

L= i  i j i�j k(xi , xj)        (7) 
   

Since the SVM uses the RBF kernel, the hyper-
parameters include: Lagrange multipliers 

( 1, 2,… i), C and . In GA for optimization, all 
corresponding parameters are directly coded to form 
a chromosome. Consequently, the chromosome X is 

represented as X={ 1, 2,…, i,p1,p2},where i 
represents the number of training features,p1 and p2 

denote “C” the cost of errors and  is the RBF 
kernel parameter. 
  The hybrid GA-SVM process is based on the 
survival principle of the fittest member in a 
population, which retains its genetic information by 
passing it on from generation to generation. The 
process of GA for SVM hyper-parameter 
optimization is described as follows: 
Initialization: Generate a random initial population of 
n chromosomes (suitable solutions for the problem). 

Fitness Evaluation: Evaluate the fitness f(x) of each 
chromosome x in the problem. In this problem, the 
DLO function in eq. (7) is used as the fitness 
function. 
Selection: Select two parent chromosomes according 
to their fitness for reproduction using the Roulette 
Wheel method. The area of the slice is proportional 
to the chromosome fitness ratio Rf and is calculated 
using: 

Rf = x100%                                     (8) 
 

where f(i) is the fitness of the ith chromosome. 
 

Crossover: Form new offspring (children) from the 
parents using a single-point crossover probability. 
Mutation: Mutate the new offspring at each position 
using a uniform mutation probability measure. 

 
Next Generation: Form the PPD for the next 
generation. 
Test: If the number of generations exceeds the 
initialized value, then stop and return the best 
chromosomes in the current population as the 
solution. 
 Loop: Go to step 2. 
  For each of the 10 pairs of (C, γ) obtained from the 
PPD, performance was measured by training 70% of 
the optimizer data and testing the other 30%. For GA 
optimization, several parameters were tested. 
Experimentally it was found that GA parameters 
illustrated in Table II, were the most suitable 
parameters for obtaining the highest SVM cross-
validation (CV) accuracy and fraud detection hit-rate. 

 
GA parameters used for SVM Hyper Parameter 
Optimization 

 
GA Parameter Value 

Maximum Generation 500 
Population Size 1000 
Crossover Rate 0.8 
Mutation Rate 0.025 

 
From all the 10 pairs of (C, γ), optimal hyper-

parameters selected were: C = 20.4726 and γ = 
0.2608. The hybrid GASVM optimization and 
training engine is illustrated. Using this (C, γ) 
parameter set, the highest 10-fold CV accuracy 
achieved was 92.58%.The reason for using 10-fold 
CV is to ensure the model does not over fit the 
training data. 
2.4 Bayesian Classification 

  In MR data sets, partial volume effects occur in 
pixels along the borders between distinct tissues. This 
is because of the finite volume of tissue represented 
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by each pixel. Assuming that there is no intensity non 
uniformity across homogeneous tissue, pure tissue 
intensity can be reasonably modeled by a Gaussian 
distribution. This is a common assumption that forms 
the basis of nearly all image segmentation 
techniques. Regions containing a mixture of tissue 
have intensities that reflect the combination of all 
tissues within each pixel (partial volume averaging).  

The method of segmentation presented herein 
addresses these partial volume effects, accepting that 
segmentation is not binary in nature from pixel to 
pixel; boundaries do not normally align with the 
sampling grid at the resolution of the imaging 
sequence. Common to all approaches to statistical 
analysis of MR data in the literature, we started by 
assuming that all pure tissues can be modeled by a 
single distribution with fixed mean. To help ensure 
this, each data set was corrected for intensity non 
uniformity due to radio-frequency field in 
homogeneity by using a post processing technique. 
Finally, for the purpose of this study, all materials in 
the sampled region of interest were identified as 
brain, CSF, or tumor tissue. In some situations, such 
as pixels containing blood or other non modeled 
tissues, this resulted in systematic errors in the 
measured values. However, systematic errors can be 
ignored if the primary goal is case-to-case growth 
rate monitoring (as systematic errors cancel in a 
computed difference). The main requirements for 
such a measurement process are high repeatability 
and sensitivity to change. We assessed both of these 
issues by using a combination of patient data and 
statistical phantoms.  
   The Bayesian approach to data analysis 
allows us to assess the most likely distribution of 
tissue proportions within a pixel. The tissue volume 
model is composed of terms for pure tissue and 
partial volumes. The pure tissues follow convention 
and use Gaussian distributions. The partial volume 
model is an extension of the work of Laidlaw et al 
(12). To make Bayesian estimation of most likely 
volume fraction possible, we had to model partial 
volumes from two tissues as two separate 
distributions of the expected volume fraction of each 
tissue within the volume. The linearity of the Bloch 
equations combined with our previous assumption 
regarding the expected Gaussian distribution of the 
pure tissue rendered partial volume curves for each 
tissue, which were triangular distributions convolved 
with the pure tissue distribution (Figure 1). This 
allowed us to write down an equation for the total 
amount of each tissue within a particular region of 
the image as a sum of pure and partial volume 
contributions weighted with the relative proportions 
of each (Equation 1) 

Ptot (g) = f1P1(g) + f2P2(g) + f3P3(g) + f1-2P1-2(g) + f2-

1P2-1(g) + f2-3P2-3(g) + f3-2P3-2(g), 
where fi is the weight given to each of the 

basic functions in the fit. Pi is the probability that a 
given gray level, g, has come from the basis function 
corresponding to tissue subclass i (1 _ pure CSF, 2 _ 
pure brain tissue, 3 _ pure tumor tissue, 1–2 _ CSF in 
partial volume pixels with brain tissue, 2–1 _ brain 
tissue I partial volume pixels with CSF, etc)      

Having established the model, we must now 
determine the free parameters, which are the expected 
mean value of the pure tissues and the relative 
proportions of each distribution. A simplex algorithm 
was used to optimize the 2 fit between an image’s 
intensity histogram and the regional model, Ptot (g) 
(23).   
3. Results and Discussion 
   In order to verify the effectiveness and 
robustness of GA-SVM optimizer, experiments were 
performed on MR images. Our proposed hybrid 
techniques are implemented on a real human brain 
dataset. The input dataset consist images: 18 images 
are normal, 17 malignant tumors suffering from a low 
grade Glioma, Meningioma and 91 benign tumors 
suffering from a Bronchogenic Carcinoma, 
Glioblastoma multiform, Sarcoma and Grade IV 
tumors. These normal and pathological benchmark 
images used for optimization are axial, T2-weighted 
of 256´256 sizes and acquired at several positions of 
the transaxial planes. These images were collected 
from the Harvard Medical School website [26]. We 
have considered that all images belonging to seven 
persons (four men and three women). Their ages vary 
between 22 and 81 years. The determination of MR 
tumor type, which can be achieved by the 
histopathological analysis of biopsies, was 
considered as the gold standard for the optimization 
of images. A typical representative MR image of 
normal, benign and malignant tumor is shown in 
Figure. 
             

 
a) Normal Brain b) Benign tumor c) Malignant tumor 

 
In this section, we present the performance 

evaluation methods used to evaluate the proposed 
approaches. We assess the performance of the 
proposed method in terms of sensitivity, specificity 
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and accuracy. The three terms are defined in 
Equations, 
 
Sensitivity=TP/(TP+FN) 100% 
Specificity = TN/(TN+FN) 100%  
Accuracy = (TP+TN)/(TP+TN+FP+FN) 100% 
 
Where: 
TP(True Positives)= correctly optimized positive 
cases, 
TN (True Negative) = correctly optimized negative 
cases, 
FP (False Positives) = incorrectly optimized negative 
cases. 
FN (False Negative) = incorrectly optimized positive 
cases. 
 
Table1. Confusion matrix for Bayesian Classification 

To evaluate the tumor’s detection accuracy, the 
algorithm performance is compared with the 
decisions made by four expert radiologist experts. 
For brain tumor optimization, we first optimize the 
brain into normal or abnormal. Then also optimize 
abnormal image to benign or malignant The 
experiment results for normal and abnormal image to 
benign or malignant optimizations are listed in Table 
1. According to these results, a optimization rate is 
obtained in Table 2.  
 
Table 2. Optimizer Performance for Bayesian 
Classification 

  
 Value 

Correct rate 0.8400 
Error Rate 0.1600 

LastCorrectRate 0.8400 
Last Error Rate 0.1600 

Inconclusive Rate 0 
Classified Rate 1 

Sensitivity 0.7826 
Specificity 0.9764 

Positive PredictiveValue 0.8571 
Negative Predictive Value 0.9612 

Positive Likelihood 33.1304 
Negative Likelihood 0.2227 

Prevalence 0.1533 
 

Figure. Curve evaluation 

Figure. Partest graph 
 

The performance evaluations are shown in 
above figures. This comparison shows that our 
system has high optimization accuracy and less 
computation due to the feature   extraction. Hence the 
experimental results show that the accuracy results of 
optimization of proposed approach are better than the 
other one lacking the decomposition stage for 
optimization of the human brain tumor. This makes 
our approach an efficient clinical image analysis tool 
for doctors or radiologists to optimize MRI tumor 
and to further obtain MRI tumor location and Vol. 
estimation. 

 Normal Benign Malignant 

Normal 18 5 0 

Benign 2 17 6 

Malignant 1 10 91 
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4.  Conclusion 
   In this paper, the computer based technique 
for Automatic Bayesian optimization of MRI slices 
as normal or abnormal with various MR image 
features using different optimizers is proposed. This 
research involves using Hybrid GA-SVM to optimize 
the input which is MRI Brain into normal and 
abnormal optimization. The performances of the 
optimizers in terms of statistical measures such as 
sensitivity, specificity and optimization accuracy are 
analyzed. 
    The results indicated that the Hybrid GA-
SVM approach yielded the better performance when 
compared to other optimizers. It suggests that Hybrid 
GA-SVM is a promising technique for image 
optimization in a medical imaging application. It can 
be used in computer aided intelligent health care 
systems. This automated analysis system could be 
further used for optimization of images with different 
pathological condition, types and disease status. 
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