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Abstract: Biomass (M)-density (D) relationships is always a hot issue in ecology and has caused great debates in 
both theoretical and empirical studies. Mounting evidence from both controlled experiments and field investigations 
suggests the scaling exponent of M-D relationships varies along environmental gradients rather than being a constant, 
negating both -3/2 and -4/3 “law”. As a kind of crucial stress response hormone in plants, abscisic acid plays 
essential roles in adjusting plant morphological and phenotypic plasticity in response to stress during their growth 
and development, influencing the mass-growth-density regulations in populations and communities. Certain 
Arabidopsis thaliana L. mutants (abi1-1, insensitive to ABA and era1-2, hypersensitive to ABA) provide an ideal 
model for testing the effects of ABA on these eco-physiological processes. We investigated the H-R, above-ground 
M-D allometric relationship in the Arabidopsis mutants and WTs under drought stress. The results suggest that 
sensitivity to ABA can alter the above-ground M-D scaling exponents by mediating H-R allometric growth in 
mutants and WTs, reflecting the hormonal effects on allometric growth and mass-density regulations with 
environmental stress.  
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Introduction: 

Biomass-Density (M-D) relationships, the 
phenomena that average individual biomass decreases 
with increasing densities in evenly aged populations, 
is an important density-dependent competition 
process, and always described by a log-log form 
equation: logM=K+αlogD, where α and K are the 
slope and coefficient of M-D relationships, 
respectively (Yoda et al. 1963; Morris 2002; Dai et al. 
2009). M-D relationship is an essential link between 
the traits of individual organism and dynamics of 
population and community. Its application has 
provided substantial insight into patterns of 
abundance (Enquist and Niklas 2001), energy 
partitioning patterns (Griffiths 1992; Dunham et al. 
2000) and growth predictions across ecological 
communities (Niklas et al. 2003; Lobón-Cerviá and 
Mortensen 2006). Despite of the long history of 
research on α in various populations, its generality is 
still called into questions and vexes the ecologists 
(Weller 1987; Lonsdale 1990; Enquist et al. 1998; 
Morris 2003; Deng et al. 2006; Dai et al. 2009). 
Based on a simple geometric model, α is suggested to 
take a value close to -3/2 (Yoda et al. 1963). The 
“-3/2” self-thinning rule has been widely accepted as 
“one of the most widespread of ecological 
regularities” in 1960-1980s (Damuth 1998). 
Nevertheless, according to a model of fractal-like 
networks of branching tubes, Enquist et al. (1998) 

predicted the scaling exponent of biomass–density 
should be -4/3 rather than -3/2. Although both of these 
constant theories have got great supports, numerous 
laboratory experiments and field investigations 
demonstrate that α is not a constant, and can be 
regulated by both abiotic and biotic factors, such as 
light (Lonsdale 1990), nutrient fertility (Morris 
2002;2003), water availability (Deng et al. 2006; Dai 
et al. 2009), marine intertidal (Sibomana and Wang 
2013), hormone response (Zhang et al. 2005; Zhang et 
al. 2006) and arbuscular mycorrhizal fungi infection 
(Zhang et al. 2011). The realistic M-D relationship 
seems far more complicated rather than ideally 
supposed by pure models (Pretzsch 2006). 

Many allometric growth models have been 
developed to illuminate the variety of above-ground α 
along environmental gradients, suggesting that the 
M-D relationships depend on the allometry between 
plant biomass and canopy dimensions such as height 
or radius (Miyanishi et al. 1979; Dai et al. 2009). Dai 
et al. (2009) have shown that the plant height–crown 
radius relationship (H–R) could account for the 
deviation of α from universal values. In their model, 
plant above-ground biomass (M) is proportional to its 
canopy volume: 

M∝R2H                   (1.1) 
where R is the crown radius and H is the shoot height. 
There is mounting evidence that an allometric 
relationship exists between H and R (e.g. Osunkoya  
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et al. 2007), thus: 
H∝Rβ                     (1.2) 

If plant canopies do not overlap, plant density (D) can 
be expressed as a function of R: 

D∝R-2                    (1.3) 
In an evenly aged population, we can get the 
expression: 

M∝Dα                    (1.4) 
Incorporating expression (1.2), (1.3) and (1.4) into 
expression (1.1) yields: 

M∝D-1-β/2                 (1.5) 
Or 

α=-1-β/2                  (1.6) 
Height growth has often shown to be at the 

costs of investment in horizontal crown expansion for 
adapting to the environment (Poorter et al. 2006). The 
trade-off between height growth and crown expansion 
results in variant β under stress, leading to various 
above-ground α along environmental gradients. The 
acclimation is not simply an ecological course but 
involves complex physiological courses tightly 
controlled by intrinsic growth regulators, especially 
plant hormones (Popko et al. 2010). As the most 
characterized hormone, absicisic acid (ABA) exists 
ubiquitously in higher plants, regulating plant growth 
and development in every aspect. Regarded as an 
excellent target for improving stress tolerance, ABA is 
proved to regulate stomatal movements and 
photosynthetic adjustment (Chaves et al. 2009), 
change morphology structure and biomass allocation 
patterns (Zhang et al. 2005; Arend et al. 2009), 
maintain root growth and inhibit shoot growth 
(Cramer and Quarrie 2002), provide better dry matter 
accumulation and yield production (Farnsworth 2004). 
According to the roles of ABA in adjusting 
morphological and physiological plastic in plant 
adaptive growth, it is reasonable ABA optimizes the 
resource capture and use strategy by affecting 
individual allometric growth, leading to various M-D 
allometric relationship along stress gradients. 
Although ABA has received extensive attentions at 
multiple levels from biosynthesis pathways, signaling 
transductions to plant morphological and phenotypic 
plasticity alterations (Chaves et al. 2003; Zhang et al. 
2005; Zhang et al. 2006), the effect of ABA on 
population-level processes, especially the population 
dynamics and construction, has rarely been discussed. 

 Certain Arabidopsis mutants with different 
sensitivities to ABA (abi1-1, insensitive to ABA and 
era1-2, hypersensitive to ABA) provide an ideal 
model for testing our hypothesis (Zhang et al. 2005). 
Protein serine/threonine phosphatases 2C (PP2C) 
encoded by the Arabidopsis ABI1 gene is a negative 
regulator of ABA signaling and the abi1 mutant 
confers a dominant ABA-insensitive Arabidopsis 
phenotype with impaired stomatal closure, reduced 

seed dormancy and changes in seedling development 
(Meyer et al. 1994; Merlot et al. 2001). ERA1 gene 
encodes for farnesyltransferase and is implicated in 
the negative regulation of guard cell ABA responses. 
The era1 mutants show hypersensitivity to ABA and 
display enhanced drought tolerance during drought 
stress compared to the wild-type (Pei et al. 1998; Pei 
et al. 2000). Using these Arabidopsis mutants and 
their WTs, in this research we investigated the H-R 
allometric relationship and the above-ground M-D 
relationships respectively among the Arabidopsis 
mutants and WTs under drought stress. We aim to 
figure out: 1) whether different sensitivity to ABA 
causes different H-R and M-D allometric relationships 
across genotypes under drought stress; 2) if it does, 
whether the differences in M-D relationships are 
caused by H-R allometric relationships.  
 
Materials and methods 
Plant materials and growth conditions 

Seeds of Arabidopsis thaliana genotypes, 
including abi1-1 mutants (insensitive to ABA), era1-2 
mutants (hypersensitive to ABA), Ler-0 
(corresponding background Wide Type of abi1-1) and 
Col-0 (corresponding background Wide Type of 
era1-2), were obtained from Arabidopsis Biological 
Resource Center, the Ohio State University, USA. The 
seeds were stored at 4℃ in the dark for one week, 
treated with 70% ethanol solutions for 30 min, rinsed 
with deionized water and sown in a random spatial 
pattern in 5cm diameter, 10cm height plastic pots 
filled with a 1:1 (v/v) mixture of pearlite and 
vermiculite.  

We used a completely randomized design 
including three densities (15, 150, 1500 seeds per pot 
yielding ca. 2000, 20000 and 200000 seedlings per 
square metre), and three replicates per genotype, 
density, and harvest combination. For the lower and 
intermediate densities the seeds were counted, 
whereas for the highest density they were weighed 
based on n=150 counted samples (mean ± s.e. 
=0.003247 ± 0.000075, 0.002860 ± 0.000236, 
0.003317 ± 0.000086, 0.003467 ± 0.000045 mg for 
abi1-1, era1-2, Ler-0 and Col-0, respectively). The 
pots were placed in a controlled environment chamber 
with a day/night temperature of 23/20℃, 70% 
atmosphere relative humidity and 16h photoperiod of 
artificial light (incandescent lamps with photon 
fluence rate of 240 μmol m-2 s-1). Pots were irrigated 
with PNS mineral nutrient solution, and the mutants 
were allowed to germinate and grow to a 4-leaves 
stage (about ten days after seedling) before drought 
treatments. 

 
Drought treatments 

In this study, the soil water contents (SWCs) 
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were determined gravimetrically everyday by 
weighing pots at the start and end of the photoperiod 
throughout the whole drying period (Xiong et al. 
2006). During the drought treatment, the SWC was 
maintained about 30-40%. All drying treatments 
lasted 40 days (the whole growth period lasted 50 
days). Various volumes of PNS mineral nutrient 
solutions were added to the pots to maintain the 
SWCs at the designed level. 
 
Biomass measurements 

The harvest was carried out 50 days after 
sowing. To avoid edge effect, a 3.5cm-radius PVC 
pipe was positioned in the center of each pot, with 
only the inside plants sampled. The final numbers are 
counted for calculating densities. The population 
density yields as (no. of individuals, g)/(area, m2). The 
above-ground parts of the plants were collected with 
great caution, then put into envelops and dried at 80℃ 
to a constant weight. Mean biomass of the plants was 
calculated as (total biomass, g)/(no. of individuals). A 
random sub-sample of 3 individuals was chosen from 
each mesocosm to measure the plant canopy radius 
(Morris 1996), and the maximum diameter of the 
canopy (the rosette) for each individual plant was 
recorded. As the rosette is the main organ involving in 
light, space and water competitions, the radius (R) 
was defined as half the diameter and the plant height 
(H) as the height from the bottom to the highest point 
of rosette, both of which were recorded 
concomitantly. 
Data analysis 

The allometric scaling exponents or slopes and 

the intercepts were estimated by the standardized 
major axis (SMA; SMATR Version 2.0; Warton et al. 
2006) regression on log-transformed data. 
Comparisons of slopes of M-D relationship, H-R 
relationship between the genotypes were performed in 
SMATR. The R2 statistic for each line was used to 
report the amount of variance explained. The 95% 
confidence intervals of SMA were used to assess 
whether an empirically determined power of 
self-thinning complied with that of control, and for 
the comparison of difference between slopes (Niklas 
1994).  

 
Results  

The H-R allometric scaling exponent (β) 
decreased with increasing sensitivity to ABA in 
genotypes (Table 1; Figure 1), and the differences 
between genotypes were significant (p=0.001). The 
regression slope of abi1-1 mutants (1.086) was 
significantly higher than all the other genotypes, while 
that of era1-2 mutants (0.504) was significantly lower 
than the others (Table 1). Ler-0 and Col-0 genotypes 
remained intermediate with no statistic difference 
between each other (0.808, 0.843). The 95% 
confidence intervals of β were 0.957 to 1.233, 0.601 
to 0.861, 0.692 to 0.957 and 0.410 to 0.619 for abi1-1, 
Ler-0, Col-0 and era1-2 ecotypes, respectively. The 
predicted above-ground M-D allometric scaling 
exponent (α), according to the equation (1.6), were 
resulted as -1.543 (abi1-1), -1.360 (Ler-0), -1.407 
(Col-0) and -1.252 (era1-2) respectively, showing an 
increasing trends with increasing sensitivity to ABA. 

 
Table 1. Scaling Exponents (β) and Intercepts (IT) of H-R Relationships in All the Ecotypes, as Estimated by 

the SMA Regression of Log-transformed data. Predicted α was Calculated According to Equation (1.6) 

Ecotypes β 95%CIs IT 95%CIs R2 Number Pre α 

abi1-1 1.086 0.957,1.233 0.033 -0.019,0.086 0.905 27 -1.543 

        Ler-0 0.720 0.601,0.861 0.157 0.109, 0.206 0.808 27 -1.360 

era1-2 0.504 0.410,0.619 0.125 0.091,0.160 0.747 27 -1.252 

Col-0 0.814 0.692,0.957 0.167 0.114,0.220 0.843 27 -1.407 

 

Figure 1. H-R relationships in all the genotypes under 
drought stress, as estimated by the SMA regression of 
log-transformed data. The slopes of regressions in 
abi1-1 and era1-2 mutants were significantly different 
from each other (p=0.001). The slope of regressions in 
abi1-1 mutants was significantly different from both 
that of Ler-0 (p=0.001) and Col-0 (p=0.007), 
respectively. era1-2 mutants had the significantly 
different slope with Ler-0 (p=0.013) and Col-0 
(p=0.001) as well. While the slopes of two WTs, Ler-0 
and Col-0, shared no statistic difference (p=0.285). 
Parameters estimates are given in Table 1.
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The observed above-ground M-D allometric 

scaling exponent (α) showed the same trend with the 
predicated α (Table 1, Table 2; Figure 2), and 
significant differences (p=0.018) existed between 
genotypes. abi1-1 mutants had the steepest regression 
line (α= -1.544) and the absolute value of α was 
significantly higher than the other genotypes (Ler-0, 
p=0.007; Col-0, p=0.007; era1-2, p=0.001), which 
had no statistic difference from each other (Ler-0, 

α=-1.245; Col-0, α=-1.266; era1-2, α= -1.123). The 
confidence intervals of above-ground α were -1.755 to 
-1.358, -1.378 to -1.124, -1.287 to -0.980 and -1.416 
to -1.132 for abi1-1, Ler-0, Col-0 and era1-2 
genotypes, respectively. More importantly, the 
predicted α for all the mutants were within the 95% 
confidence intervals of the direct estimate and 
statistically indistinguishable from their observed 
values (Table 1, Table 2; Figure 2). 

Table 2. Scaling Exponents (α) and Intercept (K) of the Above-ground M-D Relationships in All Mutants and 
WTs, as Estimated by the SMA Regression of the Log-transformed Data. 

Ecotypes M: D α 95%CIs K 95%CIs R2 Number 
abi1-1 MA:D -1.544 -1.755,-1.358 3.985 3.279,4.691 0.979 9 
Ler-0 MA: D -1.245 -1.378,-1.124 2.993 2.530,3.455 0.987 9 
era1-2 MA: D -1.123 -1.287,-0.980 2.547 1.981,3.113 0.977 9 
Col-0 MA: D -1.266 -1.416,-1.132 3.064 2.546,3.582 0.984 9 

 

Figure 2. M-D relationships between average 
above-ground biomass in all the genotypes under 
drought stress, as estimated by the SMA regression of 
log-transformed data. The slope of regression in abi1-1 
mutants was significantly different from that of Ler-0 
(p=0.007), Col-0 (p=0.007) and era1-2 mutants 
(p=0.001), respectively. The WTs and era1-2 mutants 
shared no statistically different slopes. Parameters 
estimates are given in Table 2. 
 
Discussion 
Sensitivity to ABA and plant allometric growth  

Plant allometric growth is usually an adaptive 
trait to maximize the uptake of limiting resources in 
response to environmental constrains (Dai et al. 2009). 
Plants always ‘evolve towards the optimal allometric 
trajectory’ and adjust the trajectory adaptively (Weiner 
2004). Our results showed that β decreased with 
increasing sensitivity to ABA in genotypes under 
drought stress, which meant that as plants grew larger, 
they tended to have less height growth for a given 
amount of radial extension in the increasing sensitivity 
mutants. These results suggest the altered ABA 

sensitivity can change plant allometry under stress. 
Morphological alterations with enhanced shoot growth, 
retarded leaf and root development are observed 
evidently in abi1-expressing poplars transformed with 
the dominant Arabidopsis mutant abi1 genes, indicating 
that growth processes in these plant organs are 
differently affected by altered ABA sensitivities (Arend 
et al. 2009). ABA has also been demonstrated to adjust 
the relative growth rates of various plant organs by 
inhibiting the leaf area development and plant height 
(Zhang and Davies 1991), as synthesis and 
accumulation of ABA in different organs may 
determine the final morphology of plants. Altering 
scaling relationships of plant height and biomass, as 
well as adjustments of height and leaf area growth have 
also been observed in the same material models (Zhang 
et al. 2005; Zhang et al. 2006), which co-indicate the 
mediation roles of ABA in plant developmental 
plasticity with our results.  
Sensitivity to ABA, environmental stress and M-D 
relationships 

Results from the experiments confirm our 
model prediction that H-R relationships (i.e. β) 
determine the above-ground M-D relationships (i.e. α) 
in stressful environments (equation 1.6), which 
consolidate the allometric growth model proposed by 
Dai et al. (2009). Furthermore, α is not invariant, but 
decrease with increasing ABA sensitivity under drought 
stress (Table1, 2; Figure1, 2), which demonstrate that 
above-ground M-D relationships as a consequence of 
altered individual allometric growth could be regulated 
by sensitivity to ABA. It’s noticeable that Zhang et al. 
(2006) also find that reduced resource transport 
distance (i.e. H) and amplified resource utilization area 
(i.e. leaf area) could lead to increased above-ground α 
in hypersensitive mutants than insensitive ones, which 
comply with the metabolic theory instead of individual 
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allometric model, illustrating the influence of response 
to ABA on population regulations at an 
eco-physiological level. Other environmental factors 
are proved to participate in M-D relationship 
regulations as well, as the plant architecture is 
determined by the interaction between hormone signals 
and environmental stimuli such as light distribution, 
nutrient regimes and soil water (Guo et al. 2011). 
Flatter self-thinning lines have been observed in 
environments with low light (Lonsdale and Watkinson 
1982), nutrient availability (Morris 2003), salinity 
contamination (Zhang et al. 2010) and water deficit 
(Deng et al. 2006; Dai et al. 2009), which is supposed 
to be consistent with our results. As plant growth and 
development are controlled by both external cues and 
intrinsic growth regulators (Depuydt and Hardtke 2011), 
and the osmotic stress caused by environmental stress 
will originate ABA synthesis and accumulation to 
adjust plant growth in response to stress and enhance 
stress tolerance, we are concerned that the 
physiological and morphological mediation roles of 
ABA on plant growth is the mechanism explaining the 
various above-ground scaling exponent of M-D 
regulated by environmental factors.  

Most of the studies on M-D relationship in the 
previous research are referred to the above-ground parts, 
while the below-ground M-D relationship is far less 
discussed due to methodological difficulties in root 
excavation, observation, measurement as well as 
equation built between root biomass and soil volume 
occupied (Zhang et al. 2011). However, it is 
ecologically irrational to discuss M-D relationships 
omitting the below-ground parts (Ogawa 2005), for the 
two parts may have different mechanisms during 
competition in self-thinning process (Zhang et al. 2011). 
ABA is also essential in establishing a root system. It 
has been proved to stimulate elongation of the main 
root, promote lateral root formation and increase 
relatively dry-matter allocation into the root fraction, 
leading to a significant rise of root/shoot ratio and fine 
root/ total root ratio under drought stress (De Smet et al. 
2006; Peleg and Blumwald 2011). This mediation role 
conforms to the optimal partitioning theory which 
regards the variance of root: shoot ratio as an 
acclimation strategy acquires the most limiting resource 
to survive under stress (Bloom et al. 1985; McCarthy 
and Enquist 2007; Zhang et al. 2011). Additionally, 
variation in root: shoot ratio has been demonstrated to 
alter the above- and below-ground M-D relationships 
under resource-limited conditions (Morris 2002; Bai  
et al. 2010; Zhang et al. 2011). Therefore, the roles of 
ABA in mediating below-ground M-D relationships and 
the different mechanisms from the above-ground parts 
will cause more attentions in our future work.  
The rise and prospect of phytohormonal ecology 

Our study reveals the plant 

mass-growth-density regulations involve complex 
ecological and physiological processes mediated by the 
external stress stimuli and internal hormonal system. 
Environmental stress is indispensable part in 
influencing population dynamics, as various scaling 
exponents of M-D relationships have been observed 
along environmental gradients. Of great concern is that 
these stresses become increasingly important due to 
global warming, land degradation, water deficit and 
population expansion (Depuydt and Hardtke 2011). 
Plants have evolved great plasticity to enhance 
tolerances to abiotic stresses, which are typically 
complex quantitative traits influenced by a number of 
hormone signaling and environmental interactions. 
Phytohormonal ecology is thus emerging as an 
integrative approach to testing the role of interactions 
between hormonally signaled responses on ecologically 
important traits (Farnsworth 2004). Information on the 
effects of ABA on the expression of specific genes in 
different plant species reveals a central role of ABA in 
the regulation of plant response to stress (Davies et al. 
2005; Zhang et al. 2006). However, mounting evidence 
suggests a complex network with extensive cross-talk 
exists between the different hormone signaling 
pathways during the adaptive response courses (Chaves 
et al. 2003; Davies et al. 2005; Popko et al. 2010; Peleg 
and Blumwald 2011). It demonstrates that ABA 
regulates physiological processes in plant growth and 
development coordinately with other hormones, 
regardless of antagonistic or synergistic (Sharp and 
LeNoble 2002; Farnsworth 2004; Sharp et al. 2004; 
Fujita et al. 2006; Peleg and Blumwald 2011; 
Rivas-San Vicente and Plasencia 2011). The hormones, 
such as cytokinin, auxin, gibberellins, ethylene, and 
jasmonate, deserve increasing investigations to explore 
their implications on individual development and 
population dynamics, which will advance our 
information on plant-mass-regulations. Plants bearing 
mutations in hormone-biosynthetic pathways have 
provided a profound approach to integrated 
understanding of the biochemical and physiological 
basis of stress responses in plants (Finkelstein and 
Somerville 1990; Cramer 2002; Cramer and Quarrie 
2002; Zhang et al. 2005; Arend et al. 2009; Depuydt 
and Hardtke 2011), bridging the gap of hormone effects 
and ecological processes.  
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