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Abstract: Self-thinning scaling relationship emerges as a consequence of the trade-off between growth and survival 
in crowed populations with resource limitations. As an essential link between the organism- and population-level 
traits of species, it is crucial for predicting ecosystem patterns, dynamics and construction. Despite a long research 
history, it remains controversial whether the scaling exponent is constant or if it is, what value it takes. The 
long-term debate always revolves around a dichotomous distinction between the exponent of -3/2 predicted by 
Euclidean geometry model and -4/3 derived from the fractal network of branching tubes. Evidence emerging 
recently suggests that the exponent traverses across any single value with the influence caused by biotic and abiotic 
factors. From a long-term systematic research combined with theoretical analysis, field investigation and 
experimental observation, our group summarizes that the biotic and abiotic factors are especially noticeable in 
self-thinning process ascribed to their roles in mediating plant architecture (i.e., allometric growth in height (H) and 
radius (R)) as well as above- and below-ground allocation, which alters the intensity and pattern of plant interaction 
(competition and facilitation) and results in variable self-thinning trajectory. To better understand how body mass 
and density are related in self-thinning process in relation to affecting factors, we describe the self-thinning 
phenomena, review the theoretical and empirical -3/2 and -4/3 self-thinning rule, discuss the various factors 
affecting the self-thinning trajectory, analyze the possible mechanism underlying the formation of self-thinning 
relationship and propose novel directions for future mass-density research. 
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Introduction: 

Mass-density relationship has been received 
great attentions in theoretical and quantitative ecology 
as an essential link between the organism- and 
population-level traits of species and the structure and 
dynamics of ecosystems (White EP et al. 2007). The 
most focused mass-density form is the self-thinning 
relationship. Self-thinning relationship describes a 
phenomenon in density-dependent mortality 
populations that the density of survivors (D, number 
per square meter) is related to their mean biomass (M, 
in grams) by a power equation M=kDα, where k and α 
are constants. When transformed to logarithms, the 
equation turns to be logM= k’+αlogD, where α is the 
allometric exponent of biomass and density and k’ is 
the coefficient. This allometric relationship has been 
considered “one of the most widespread of ecological 
regularities” (Damuth 1998), and extended to predict 
growth and biomass across ecological communities 
(Niklas et al. 2003). Despite a long and eminent 
research history in ecology, debates over whether α is a 
universal constant or if it is, what value should it take 
remain controversial. The most famous “-3/2” 
self-thinning rule suggests α should take a value close 

to -3/2 based on the traditional Euclidean 
surface-area-to-volume geometry model (Yoda et al. 
1963). This rule has been recognized as the “first 
principle” in plant ecology during 1960s to 1980s 
(Hutchings 1983). In contrast, the recent metabolic 
scaling theory predicts that the scaling relationship 
between individual metabolic rate and biomass (β) is 
3/4 according to a fractal-branching model and the 
scaling exponent between individual biomass and 
maximum population density (α) should inversely be 
-4/3, instead of -3/2 (West et al. 1997, 1999a, 1999b; 
Enquist et al. 1998; Brown et al. 2005; Price et al. 
2012). Although both of the universal “laws” have 
gained considerable support in a general sense (Yoda et 
al. 1963; Hutchings 1983; Enquist et al. 1998; Enquist 
and Niklas 2001; Enquist and Niklas 2002; Brown et 
al. 2004; West and Brown, 2004), suspicion and 
criticism on their assumption and applicability present 
the theories big challenges (Weller 1987; Lonsdale 
1990; Dodds et al. 2001; Sack et al. 2002; Bokma 
2004; Kozłowski and Konarzewski 2004; Coomes 
2006; Muller-Landau 2006). Although these simple and 
general rules are prone to reduce complexity, they 
cannot avoid the risk of neglecting individual species 
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peculiarities. In addition, extensive evidence from filed 
investigations and laboratory experimentations has 
demonstrated that the allometric exponents for the 
metabolic rate could vary significantly with some 
biotic and abiotic factors (Ricklefs 2003; Kozłowski 
and Konarzewski 2004; Pretzsch 2006; Reich et al. 
2006; Duncan et al. 2007; White CR et al. 2007), just 
as the slopes of self-thinning lines change as a function 
of water or nutrient limitations (Morris 2002, 2003; 
Deng et al. 2006; Dai et al. 2009), saline (Zhang H et 
al. 2010b), shade tolerance (Lonsdale and Watkinson 
1982), marine intertidal (Sibomana and Wang 2013), 
spatiotemporal scales (Dunham and Vinyard 1997), 
arbuscular mycorrhizal fungi infection (Zhang Q et al. 
2011a, b), ontogeny stages (Sack et al. 2002), 
species-specific traits (Pretzsch 2006; Deng et al. 
2008), forest types (Zhang WP et al. 2011) and 
taxonomic levels (Isaac and Carbone 2010). The 
existence of heterogeneous self-thinning relationships 
implies that some factor or combination of factors is 
acting to limit population density. As the “actual slopes 
convey valuable information about species and habitats 
that should not be cast away” (Zeide 1987), to identify 
the causal factors and underlying mechanisms for the 
deviation of self-thinning lines is essential for the 
assessment and understanding of the dynamics of 
organisms, populations or ecosystems (Lobón-Cerviá 
and Mortensen 2006; Pretzsch 2006). In this paper, we 
analyzed the causal factors and underlying mechanisms 
of heterogeneous scaling relationships to make a better 
understand towards the mass-density regulations in 
self-thinning populations, while a detailed review of 
constant theories of self-thinning phenomenon was 
beyond the scope of this paper. 
 
The abotic or biotic factors affecting the 
mass-density relationship 

The mass-density relationship in 
self-thinning process often reflects the consequence of 
intraspecific competition, which is greatly related to 
plant strategies of resources allocation and utilization 
across body size. The analysis of a broader range of 
competitive states and stand densities of individual 
plants demonstrates that allometry for self-thinning 
conditions is one special borderline-case in a 
continuum of growing conditions. Emerging laboratory 
experiments and field investments have suggested 
various biotic or abiotic factors can influence the 
population dynamics by determining plant allometric 
growth and patterns of plant interactions. We have 
summarized the evidence against the universal 
self-thinning rules in eminent literatures in this 
research field and classified the affecting factors as 
follows. 
 
 

Environmental factors 
The physical environment is the primary 

determinant of net primary production. In natural 
stressful environments, plants have to cope with several 
limiting factors, such as water shortage, nutrient 
sterility, salinity and shade, which may influence plant 
competitive potential and consequently population 
dynamics and construction (Niinemets and Valladares 
2006; Valladares and Niinemets 2008). In benign 
environments with abundant water and nutrient, plants 
primarily compete for light or space via stretching the 
shoots; in harsh conditions with limited water and 
nutrient, they always increase root allocations to 
compete for the below-ground resources preferentially. 
The magnitude and pattern of competitions is supposed 
to shift along environmental gradients, resulting in 
deviation in slopes of self-thinning lines (Jia et al. 
2011). Lonsdale and Watkinson (1982) investigated the 
effects of shade on self-thinning in Lolium perenne 
populations grown under various shade regimes, and 
found that populations thinned along a line of slope -1 
to -3/2 from deep shade to un-shaded growth 
conditions. This phenomenon could be explained via 
the higher shoot/root ratios in shaded than in un-shade 
populations. Consequent studies discussed the roles of 
light competitions in driving the self-thinning process 
and draw the same conclusions (Xue and Hagihara 
1999). Westoby (1984) found that mono species grown 
under heterogeneous resource level conditions would 
have different intercepts of self-thinning lines. These 
differences caused great deviation of slopes for the 
same self-thinning lines. Zeide (1985) deduced the 
same conclusion that the slope was habitat-specific. In 
addition, the slope was defined as the survival ability 
under intraspecific competitions. Morris (2002, 2003) 
investigated the effect of fertility level of the substrate 
on the self-thinning lines in the Ocimum basilicum 
populations. He pointed out the slope of self-thinning 
line was the ultimate manifestation of intraspecific 
competition. He also proposed that the differences in 
the slopes of the self-thinning lines were due to the 
differences in the radial extension of the canopy versus 
shoot mass relationships of individual plants at each 
fertility level, and/or to an increase in root competition 
at the lower fertility level. Wang et al. (2004) agreed 
that competition was the dominant factor that restricted 
the self-thinning process. The growth pattern of 
individuals in the plant population was supposed to 
change from isometry to allometry with the 
self-thinning exponents ranging from -2.5 to -1 
accompanied with the increase of competition intensity 
from the beginning as he observed. Deng et al (2006) 
analyzed data obtained from plant communities along a 
natural gradient of moisture and latitude in north-west 
China, figuring out the above-ground mass-density 
scaling exponents decreased (absolute value increased) 
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with increasing natural moisture and plant cover. Dai  
et al. (2009) observed the similar phenomenon and 
proposed that the scaling relationship was determined 
by another two allometric relationships, i.e., plant 
height with crown radius (φ) and canopy coverage with 
density (θ). The equation could be expressed as α= 
(2+φ)(θ-1)/2, where φ was allometric exponent of the 
shoot height with the crown radius and θ was the 
exponent of canopy coverage with plant density. The 
equation was matched with the investigated data. 
Zhang H et al. (2010b) investigated the mass-density 
relationship in Suaeda salsa populations grown in 
heterogeneous salinity conditions and found that the 
mass-density allometric exponent increased with 
decreasing salinity level. The alteration resulted from 
the distinguished geometric morphologies and resource 
utilization in response to salinity stress. An 
individual-based “zone-of-influence” model analysis 
demonstrated the mass-density relationship shifted 
from monotonic to humped when the mimic salinity 
stress increased (Chu et al. 2008). The conclusion was 
consolidated with a field experiment on the clonal grass 
Elymus nutants in an alpine meadow, showing that 
facilitation would increase in harsh environment and 
the mass-density relationship was determined by the 
balance between facilitation and resource competition.  

Although overwhelming evidence has 
demonstrated environmental factors are determinate in 
mass-density regulations by influencing plant 
interactions, the quantitative effect is rarely discussed 
due to the difficulties in quantifying the stress intensity. 
The involvement of the Michaelis-Menten Equation 
(R/(Km+R)) can solve this problem. For example, the 
effects of photosynthetic active radiation on the 
metabolic scaling relationship in marine autotrophs 
could be tested by the equation: Y=σMα(R/(Km+R)), 
where R was the resource availability (here 
photosynthetic active radiation) and Km was the 
half-saturation constant that represented the amount of 
quanta at which half the maximum metabolic activity 
was reached for the metabolic rates of marine 
autotrophs  (López-Urrutia et al. 2006). 
 
Ontogeny stage 

Studies tracking herbaceous plants from 
seedlings to senescence have demonstrated that rates of 
photosynthesis, patterns of biomass allocation, relative 
growth rates, construction costs, leaf longevity, root: 
shoot ratios, plant architecture, levels of plasticity, and 
sensitivity to stress co-vary with plant age, or the 
varying levels of ontogenetic drift. The ontogenetic 
effects on structural and physiological traits are 
determinate in species competitive potentials in various 
environments. Sack et al. (2002) investigated series of 
biomass allometric partitioning relations and found that 
the scaling exponents were dramatically affected by 

ontogeny stages. Examination of the juveniles of seven 
woody species showed that the specific leaf area (SLA) 

∝Mt
-0.22, where Mt was the total plant dry mass. 

Noticeably, the scaling exponents changed from early 
to later ontogeny. For small plants, the proposed 

relations ML∝ MS
3/4∝ MR

3/4 by Enquist and Niklas 
(2002), where was ML standing leaf dry mass, MS was 
stem dry mass and MR was root dry mass, had also been 

rejected. The data supported the relations ML+MS ∝ MR
 

and ML ∝ MT
 only for the early stage, which 

constituted a crucial period for establishment. Cheng et 
al. (2009) analyzed a large dataset for Chinese forests 
covering six major forest biomes and a total of 17 
forest types grown across a range of stand age (3 to 350 
yrs), figuring out the scaling exponent of annual 

productivity with metabolic rate was unity (＞1) at the 
early stage and systematically declined with the stand 
age. Using a forest biomass dataset including 1 266 
plots of 17 main forest types across China, Li et al. 
(2005) explored the scaling exponents between tree 
productivity and tree mass and found no universal 
value across forest stands. The variations were 
probably caused by the large range of plant size and 
age of the samples. By measuring respiration of 271 
whole plants spanning nine orders of magnitude in 
body mass, Mori et al. (2010) substantiated the 
allometric exponent varied continuously from 1 (in the 
smallest plants) to 3/4 (in large saplings and trees). It 
was possible that juveniles had higher growth rates in 
comparison to more mature conspecifics provided they 
produced disproportionately large foliage biomass 
(Niklas and Enquist 2001). Enquist et al. (2007) had 
made some modifications to their original WBE model 
and restated that scaling exponents were close to 1.0 
for seedlings owing to the violation of WBE 
assumptions in seedlings and shifted to 3/4 in large 
plants. 
 
Species-specific 

Kozlowski and Konarzewski (2004) 
criticized the WBE model as neither mathematically 
correct nor biological relevant or universal. They 
claimed more biological realism and analysis to explain 
why scaling exponents differed between taxonomic 
groups. Pretzsch (2006) provided empirical evidence 
against the general and species-invariant scaling rule 
by analyzing the database including plots of pure 
common beech, Norway spruce, Scots pine and 
common oak stands which had been inventoried since 
1870. The results demonstrated the 
ln(N)-ln(D)-relationships with a species-specific values 
of α=-1.789 for European beech, α=-1.664 for Norway 
spruce, α=-1.593 for Scots pine and α=-1.424 for 
Sessile oak. The heterogeneous allometric exponents 
indicated how strongly a species-specific structural 
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enforced self-thinning lines or the species’ 
self-tolerance. Deng et al. (2008) examined the 
mass-density and metabolic scaling relationships in 
tree, desert shrubs and herbage communities spanning a 
size range of 11 orders of magnitude, suggesting the 
continually variable scaling relationships was 
species-specific and dependent on environmental 
conditions. Zhang et al. (2012) analyzed the standing 
stem, branch and leaf biomass-density relationships 
across a range of forest community in China, 
concluding that the scaling exponents for the 
components of plants might vary across different forest 
types. Isaac and Carbone (2010) provided the first 
estimate of the variance among taxa and found the 
scaling was dependent on the taxonomic level. 
According to the variation, they suggested the 
expression of “universal” should be modified as “3/4 
scaling of metabolism is the central tendency”. All the 
observed developments of plant structure and stand 
self-thinning dynamics seem to result from a general 
allometric partitioning, as a species-specific structural 
allometry and plasticity is an adaptation and 
acclimation to selective pressure (Pretzsch et al. 2012).  
 
Arbuscular mycorrhizal fungi (AMF) infection 

Allometry is determinate in the regulation of 
plant biomass-density relationships during 
self-thinning. AMF was reported to affect the 
importance of below-ground relative to above-ground 
interactions and change shoot/root biomass allocation. 
These changes would alter the allometric allocation of 
biomass and shift the self-thinning trajectory (Zhang Q 
et al. 2011b). Although AMF can affect the 
biomass-density relationship through mediating 
intraspecific competition, the effect is always 
resource-dependent in more complex environment. 
Zhang Q et al. (2011a) demonstrated that AMF status 
could shift the biomass-density relationship via effects 
on intraspecific competition with sufficient availability 
of water but could not when the water was insufficient. 
Yu et al. (2012) investigated the how interactions of 
salt stress and AMF acted to influence plant neighbor 
effects and self-thinning in Medicago sativa 
populations. They proved that AMF could increase 
competition, decrease survival rate and steepen the 
self-thinning line with the absence of salinity while its 
roles were buffered with the salt stress. 
 
Hormonal regulation 

Plants utilize phytohormone signaling 
systems to maintain their cellular and whole-body 
functions (Okamoto et al. 2012). Phytohormones 
participate in diverse fundamental physiological 
process, including developmental regulation and stress 
responses. In Arabidopsis, hypersensitivity to ABA 
reduces shoot branching, suggesting a role of ABA in 

maintaining axillary bud dormancy and hence in shoot 
architecture (Pei et al. 1998). The plant architecture 
and canopy structure is supposed to be greatly involved 
in mass-density allometric relationships in crowed 
population. Zhang H et al. (2005, 2006, 2010a) found 
that sensitivity to ABA could affect self-thinning 
relationships and scaling of growth rate with body mass 
as well as plant interaction in Arabidopsis mutant 
populations via mediating resource utilization 
efficiency. They figured out that the hypersensitive 
mutant (era1-2) had larger total leaf area and shorter 
energy transportation distance according to the fractal 
distribution model, and thus was more advantageous in 
resource use than the insensitive mutant (abi1-1) in 
response to density stress. Series of physiological 
functions were altered accordingly, which ultimately 
led to variable scaling exponents of self-thinning and 
metabolism across the mutants. The involvement of 
hormonal regulation on mass-density relationships has 
linked the physiological and morphological process to 
the population and community functions. The 
coordinated regulations of hormone biosynthetic 
pathways have been demonstrated to play crucial roles 
rather than a single hormone (see the reviews by 
Acharya and Assmann 2009; Pinheiro and Chaves 
2011), indicating more species of hormone are engaged 
in the regulation. Phytohormone ecology has developed 
as a new tool to explore the central role that hormones 
may have in population dynamics and construction 
(Farnsworth 2004). 
 
Prospect 

As an essential link between ecosystem 
function with evolutionary demography (Westoby 
1984), self-thinning relationship is always a central 
issue in theoretical ecology (White EP et al. 2007). The 
self-thinning rules have been broadly applied in the 
development of density management diagrams, patterns 
of abundance (Enquist and Niklas 2001), energy 
partitioning patterns (Griffiths 1992; Dunham et al. 
2000) and growth predictions across ecological 
communities (Niklas et al. 2003; Lobón-Cerviá and 
Mortensen 2006). Although -3/2-scaling derived from 
Euclidian geometric model or -4/3-scaling based on the 
metabolic scaling theory can meet human’s innate 
propensity for generality and simplicity of pattern and 
processes in nature, the lack of support for a single 
exponent model suggests that there is no universal 
allometric scaling relationship, representing a 
significant challenge to any present model that predicts 
constant exponent. Emerging evidence suggests more 
and more physiological and ecological factors and 
phenomena are implicated in self-thinning process, 
which should be concerned in analyzing the 
mechanism underlying the variation of scaling 
exponents, meliorating the imperfect predicting models 
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or equations. The environmental factors are especially 
noticeable due to their roles in mediating plant 
architecture and above- and below-ground allocation. 
In further work, the combining of approaches of 
mathematic models, computer simulation, field 
investigations and the micro-level physiological and 
molecular experiment will shed light on the 
quantitative dynamics calculations in the mass-density 
regulations. This research area will offer a predictive 
framework for assessing and responding to global 
changes in the abundance, distribution and diversity of 
organisms, as well as the fluxes of energy and materials 
in ecological systems.  
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