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1    Introduction 

 A t-(v, k, λ) design Π is an incidence 
structure with v points, k points on a block and any 
subset of t points is contained in exactly λ blocks, 
where v > k, λ > 0. The number of blocks is b and the 
number of blocks on a point is r. 

The design Π is resolvable if its blocks can be 
partitioned into r parallel classes, such that each 
parallel class partitions the point set of Π. Blocks in the 
same parallel class are parallel. Clearly each parallel 
class has m = v/k blocks. Π is affine resolvable, or 
simply affine, if it can be resolved  so that any two non-
parallel blocks meet in µ points, where µ = k/m = k2/v 
is constant. Affine 1-designs are also called nets. The 

dual design of a design Π is denoted by Π*.  If Π and 
Π* are both affine, we call Π a symmetric net. We use 
the terminology of Jungnickel [2] see also [3] In this 
case, if r > 1, then v = b = µm2 and k = r = µm. That is, 
Π is an affine 1 − (µm2, µm, µm) design whose dual Π* 
is also affine with the same parameters. For short we 
call such a symmetric net a (µ, m)-net  (see [1]).  

If Π is a symmetric net we shall refer to the 
parallel classes of Π as block classes of  Π and to the 
parallel  classes of Π* as point classes of Π. 

The incidence matrix  of the symmetric (2, 4)-
net is as shown below.  In 2007, this symmetric net has 
been shown by V. D. Tonchev [4] to be unique using an 
exhaustive computer search. 

 
 

 In this paper we shall give algebraic and 
geometric presentations of this symmetric (2, 4)-net 
using sets of subspaces of appropriate vector spaces 
and projective geometries, respectively. of V (5, 2) and 
determine all such subsets. 

 

2  Various setups 
Let V (n, q) denote the vector space of 

dimension n over the field of q elements and let V = V 
(5, 2). Hypothesis A: Let U0, U1, . . . , U8 be subspaces 
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of V so that  
• dim U0 = 2 and dim Ui  = 3 for 1 ≤ i ≤ 8, 
• U0 ∩ Ui  = 0 for 1 ≤ i ≤ 8, 
• dim(Ui ∩ Uj ) = 1 for 1 ≤ i < j ≤ 8. 
Theorem 2.1 Suppose that U0, U1, . . . , U8 

are subspaces of V satisfying Hypothesis A. The 
incidence structure  whose points are the elements of V 
and whose blocks are  thecosets of Ui, 1 ≤ i ≤ 8, in V is 
a net with m = 4 and µ = 2. The point parallel classes 
are the cosets of U0 in V .  

Proof.   This is almost immediate.  We  need 
only observe  that  if i = j then the intersection of a  
coset of Uj   with Ui is non-empty and is a coset in Ui  
of Ui  ∩ Uj , and every coset of U0 meets every coset of 
Ui  in a single point. 

Hypothesis B: Let V0, V1, . . . , V8 be 
ubspaces of  V so that  

• dim V0 = 3 and dim Vi  = 2 for 1 ≤ i ≤ 8, 
• Vi ∩ Vj  = 0 for 0 ≤ i < j ≤ 8. 

For any subspace U of V , let U⊥ = {ut : (u, 

ut) = 0 for all u ∈ U }, where (·, ·) denotes the 
standard inner product on V . 

Theorem 2.2 V has a set of subspaces 
satisfying  Hypothesis  A if, and only if, V has a set of 
subspaces satisfying  Hypothesis  B. 

Proof. Assume that U0, U1, . . . , U8 are 

subspaces of V satisfying Hypothesis A. Let Vi  =∪  
for  i = 0, . . . , 8. 

Then dim Vi  = 5 − dim Ui  for 0 ≤ i ≤ 8. For 1 
≤ i ≤ 8, dim(U0 + Ui) = dim U0 + dim Ui  − dim(U0 ∩ 
Ui)  = 2 + 3 − 0 = 5.  Also, for 1 ≤ i < j ≤ 8, dim(Ui  + 
Uj ) = dim Ui + dim Uj  − dim(Ui ∩ Uj ) = 3 + 3 − 1 = 5. 
Hence, Ui + Uj  = V if 0 ≤ i < j ≤ 8. So, if i = j, Vi ∩ Vj  

=  ∩ = (Ui + Uj )
⊥ = V⊥ = 0. 

Thus, V0, V1, . . . , V8 satisfy Hypothesis B. 
The converse statement is established by a 

similar argument. Let Π be P G(5, 2) and let π be one 
of its hyperplanes. 

Hypothesis C: Let Q be a point of Π not on 
π, and let π0, π1, . . . , π8  be subspaces of Π containing 
Q so that 

• dim π0  = 2 and dim πi  = 3 for 1 ≤ i ≤ 8, 
• π0 ∩ πi  = {Q} for 1 ≤ i ≤ 8, 
• dim(πi ∩ πj ) = 1 for 1 ≤ i < j ≤ 8. 
 (In this hypothesis, dimension means 

geometric dimension.) 
Theorem 2.3 V has a set of subspaces 

satisfying  Hypothesis  B if, and only if, Π has a set  of 
subspaces satisfying  Hypothesis  C. 

Proof. Assume that V0, V1, . . . , V8 are 
subspaces of V satisfying Hypothesis B. Consider V to 
have its natural affine geometry structure AG(5, 2). 
Complete this to Π, the projective geometry P G(5, 2), 
by adding a hyperplane  π.  Let πi  be the completion of 

Vi  in Π. Then Hypothesis C is seen to hold with Q 
being the 0 of V . 

For the converse, let Q be a point of Π not on 
π, and let π0, π1, . . . , π8  be subspaces of Π containing 
Q and satisfying Hypothesis C. Look at the affine 
geometry structure on the complement of π, where Q is 
taken as the 0 of V . We find a set of subspaces of V 
satisfying Hypothesis B immediately. 

 
3    Justifying the hypotheses 

Here we show that it is possible to find sets 
of subspaces satisfying the hypotheses.  In view of the 
equivalence of the hypotheses, we shall deal with 
Hypothesis  A. 

Let V = V (5, 2).  Let W be a 3-dimensional  
subspace of  V and let A and B be two 

2-dimensional  subspaces such that A ∩ W = 
B ∩ W = A ∩ B = 0. Since dim(A + B) = 4, X  = (A + B) 
∩ W  is a 2-dimensional  subspace of W . (As A + W  = 
V , dim X  = dim(A + B) + dim W − dim(A + B + W ) = 
4 + 3 − 5 = 2.) 

There are two 2-dimensional  subspaces Y 
and Z of A + B which intersect A, B and X trivially, and 
intersect one another trivially also. This can be seen be 
a counting argument (look at all 2-dimensional   spaces 
of (A + B),  or by listing all elements of A + B  and 
examining the 2-dimensional  spaces in detail, or by 
considering the following argument. 

There are six elements in A + B − (A ∪ B∪ 
X ). Label them u1, . . . , u6. Suppose ui + uk , uj  + uk  

∈ A, where i, j and k are distinct.  Then A = {0, ui  + uk 
, uj  + uk , ui  + uj } So, A + uk = {ui, uj , uk , ui + uj  + uk 
} must contain a non-zero element of B and a non-zero 
element of X . A similar argument applies to B and X , 
since A + B = A + X = B + X . 

This contradiction shows that, for a given k, 
at most three of the elements ui + uk , with i = k, are in 

A ∪ B ∪ X . Hence, for a given k we can find i so that 

(ui, uk ) meets A ∪ B ∪ X in 0. 
Let W \ X  = {t1, t2, t3, t4}.  dim(Y + (ti)) = 

dim(Z + (ti)) = 3 for 1 ≤ i ≤ 4. Since Y ∩ Z = 0, dim((Y 
+ (ti)) ∩ (Z + (tj ))) = 1, for 1 ≤ i, j ≤ 4. Let (xi,j ) = (Y + 
(ti)) ∩ (Z + (tj )). If i = j then xi,j = ti.  The sixteen 
elements xi,j are distinct since any pair belong to 
different cosets of Y or different cosets of Z . 

We  now show how to pick six 2-dimensional  
subspaces, meeting pairwise in 0, and meeting Y ∪ Z 

\{0} in distinct points. Note that Y + (ti) = Y ∪ {xi,j   : 1 

≤ j ≤ 4} and Z + (tj ) = Y ∪ {xi,j   : 1 ≤ i ≤ 4}. 
Pick an arbitrary 2-dimensional  subspace in 

some Y + (ti) meeting Y in a 1-dimensional subspace. 
Rearranging  labels, we may suppose that it is (x1,3, x1,4) 
in Y + (t1). 

Suppose that Z + (t3) contains one of our six 
2-dimensional  subspaces. Then, since it does not 
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contain x1,3, it is (x2,3, x4,3). If Y + (t4) contains  one of 
our six 2-dimensional subspaces,  it must be (x4,1, x4,2).  
It is impossible to complete the selection of six 2- 
dimensional  subspaces. The alternative is that Y + (t2) 
and Y + (t3) contain one each of our six 2-dimensional  
subspaces, the in the former it must be (x2,1, x2,4). So, 
(x3,1, x4,1) must also be one. As must (x3,2, x3,4) and (x1,2, 
x4,2). 

We must verify that these six 2-dimensional  
subspaces meet pairwise  in 0; they clearly meet  A and 

B in0. Suppose that w ∈ (xi,j , xi,4) ∩ (xi’ ,j’ , xi’ ,4) and w 
= 0, with i = I’. 

 Since xi,j and xi,4  are in a different coset of Y 
from xit ,jt  and xit ,4, we must have w = xi,j + xi,4  = xi’ ,j’  + 

xi’ ,4.  Now, xi,4 + xi’ ,4  ∈ Z .  Hence, xi,j + xi’,j’  ∈ Z .  
But this is impossible, since j = j’.  Thus, the 2-
dimensional  subspaces of the form (xi,j , xi,4) meet 
pairwise in 0. A similar argument shows that Thus, the 
2-dimensional  subspaces of the form (xi,j , x4,j ) meet 

pairwise in 0. Next suppose that w ∈ (xi,j , xi,4) ∩ (xi’,j’ , 

x4,j’ ) and w = 0.  Since xi,j + xi,4  ∈ Y and xit ,jt  + x4,jt    

∈ Z  and Y ∩ Z  = 0, w must be one of xi,j and xi,4  and 
one of xit ,jt  and x4,j’ .  By our choice of subspaces, all 
four of these elements differ. Hence, the six 2-
dimensional  subspaces (x1,3, x1,4), (x2,1, x2,4), (x3,2, x3,4), 
(x3,1, x4,1), (x1,2, x4,2), and (x2,3, x4,3) meet our 
requirements. 

Suppose now that Z + (t3) does not contain 
one of our six 2-dimensional  subspaces. Then, (x2,4, 
x3,4) must be one of them. If Y + (t3) contains one of our 
six 2-dimensional subspaces,  it must be (x3,1, x3,2).  It is 
impossible to complete the selection of six 2- 
dimensional  subspaces. The alternative is that Y + (t2) 
and Y + (t4) contain one each of our six 2-dimensional  
subspaces, the one in the former must be (x2,1, x2,3). So, 
(x3,1, x4,1) must also be one. As must (x4,2, x4,3) and (x1,2, 
x3,2). 

We may verify that these six 2-dimensional  
subspaces meet pairwise in 0 exactly as for the previous 
case. They clearly meet A and B in 0.  Hence, the six 2-
dimensional subspaces (x1,4, x1,3), (x2,1, x2,3), (x4,2, x4,3), 
(x4,1, x3,1), (x1,2, x3,2), and (x2,4, x3,4) meet our 
requirements. 

 
4    Determination of all  sets of subs paces  
satisfying Hypothesis A 

In this section we determine in V (5, 2) all 
sets of subspaces satisfying the conditions of 
Hypothesis A of section 3. 

First we need a general lemma on subspaces 
of vector spaces. 

Lemma 4.1 Let V be a vector space. Let V1 

and V2 be non-zero   subspaces of V such that V  = V1 ⊕
V2.  Let W1  and W2  be subspaces  of V  such that dim 
W1  = dim W2, dim W1 ∩ V1 = dim W2 ∩ V1 and dim W1 

∩ V2 = dim W2 ∩ V2.  Then there is a linear 

transformation θ ∈ GL(V ) such that V1θ = V1, V2θ = V2 
and W1θ = W2. 

Proof. For i = 1, 2, let πi : V → Vi  be the 
projection of V on Vi.  Let d = dim W1, m1 = dim W1 ∩ 
V1 and m2 = dim W1 ∩ V2. For i = 1, 2, we write Wi  = 

Wi ∩ V1 ⊕ dim Wi ∩ V2 ⊕ Ui where Ui  is a suitably 
chosen subspace of Wi  and dim Ui  = d − m1 − m2. 

 Fix i,j ∈ 1, 2. The kernel U’
i,jof the linear 

mapping πj |Ui is a subspace of V3−j . Hence, Ui,j  ⊆ 
(V3−i ∩ Wi) ∩ Ui  = 0. So, πj  maps Ui  bijectively to Uiπj 

. 
Let v ∈ (Wi ∩ Vj ) ∩ Uiπj . Write v = uπj . 

Since u = uπj + uπ3−j  we get uπ3−j  = u − v ∈ Wi.  

Hence, uπ3−j  ∈ Wi  ∩ V3−j . Since 0 = v + uπ3−j  − u, we 
get v = 0, uπ3−j  = 0 and u = 0. Hence, (Wi ∩ Vj ) ∩ Uiπj  
= 0. 

For i, j ∈ {1, 2},  choose bases Ai,j  of Wi  ∩ 
Vj   and bases Bi  of Ui.  Let σ : B1  → B2 be a bijection.  
From the preceding remarks, Biπj   are linearly 

independent sets of size d − m1 − m2  and Ai,j ∪ Biπj   
are linearly independent sets in Vj   of size d − m3−j .  

We extend Ai,j ∪ Biπj  to a basis Ci,j  of Vj . 
We define the desired linear transformation 

as follows. Di  = Ci,1  ∪ Ci,2  is a basis of V for i = 1, 2. 
The transformation is obtained by mapping D1 
bijectively to D2 so that C1,j is mapped bijectively to 
C2,j  for j = 1, 2. In mapping C1,j  to C2,j , we map vπj  to 

vσπj  for all v ∈ B1 and A1,j  bijectively to A2,j  and 
assign the rest of the basis C1,j  to the rest of the basis 
C2,j  arbitrarily. 

The only point to note is that since vπj   maps 

to vσπj   for all v ∈ B1  and j = 1, 2, v = vπ1 + vπ2 maps 

to vσπ1 + vσπ2  = vσ for all v ∈ B1. Hence, the linear 
transformation induces a non-singular linear 
transformation U1 → U2. 

Corollary 4.2 Let V = V (5, 2). Let X, Y, Z be 
subspaces of V with dimX  = 3, dimY = dimZ = 2 and 
any two of the three subspaces meet only in the zero 
vector. If X’, Y’, Z’ are three subspaces with the 
analogous properties  in V , then there exists a non-
singular linear transformation mapping X, Y, Z onto X’, 
Y’, Z’, respectively. 

Using this corollary, a computer search  
determined all sets of subspaces  satisfying Hypothesis 
A of section 2. In view of the above corollary, we can 
take the 3-dimensional subspace to be generated by the 
vectors (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0) and 
take two the 2−dimensional  subspaces to be the one 
generated by (0, 0, 0, 0, 1), (0, 0, 0, 1, 0)  and the other 
generated by (0, 0, 1, 0, 1), (0, 1, 0, 1, 0). 

We list below the sets of eight 2-dimensional  
subspaces satisfying Hypothesis A and these extra 
constraints, giving their non-zero elements.
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subspace set 1: 

[0, 0, 0, 0, 1], [0, 0, 0, 1, 0], [0, 0, 0, 1, 1]  
[0, 0, 1, 0, 1], [0, 1, 0, 1, 0], [0, 1, 1, 1, 1] 
[0, 0, 1, 1, 0], [1, 0, 0, 1, 1], [1, 0, 1, 0, 1]  
[0, 0, 1, 1, 1], [1, 1, 0, 0, 1], [1, 1, 1, 1, 0]  
[0, 1, 0, 0, 1], [1, 0, 0, 1, 0], [1, 1, 0, 1, 1]  
[0, 1, 0, 1, 1], [1, 0, 1, 1, 0], [1, 1, 1, 0, 1]  
[0, 1, 1, 0, 1], [1, 0, 1, 1, 1], [1, 1, 0, 1, 0]  
[0, 1, 1, 1, 0], [1, 0, 0, 0, 1], [1, 1, 1, 1, 1] 

subspace set 3: 
[0, 0, 0, 0, 1], [0, 0, 0, 1, 0], [0, 0, 0, 1, 1] 
[0, 0, 1, 0, 1], [0, 1, 0, 1, 1], [0, 1, 1, 1, 0]  
[0, 0, 1, 1, 0], [1, 0, 0, 0, 1], [1, 0, 1, 1, 1]  
[0, 0, 1, 1, 1], [1, 1, 0, 1, 0], [1, 1, 1, 0, 1] 
[0, 1, 0, 0, 1], [1, 0, 0, 1, 0], [1, 1, 0, 1, 1]  
[0, 1, 0, 1, 0], [1, 0, 1, 0, 1], [1, 1, 1, 1, 1]  
[0, 1, 1, 0, 1], [1, 0, 0, 1, 1], [1, 1, 1, 1, 0] 

[0, 1, 1, 1, 1], [1, 0, 1, 1, 0], [1, 1, 0, 0, 1] 
subspace set 5: 

[0, 0, 0, 0, 1], [0, 0, 0, 1, 0], [0, 0, 0, 1, 1] 
[0, 0, 1, 0, 1], [1, 0, 0, 1, 1], [1, 0, 1, 1, 0]  
[0, 0, 1, 1, 0], [0, 1, 0, 1, 1], [0, 1, 1, 0, 1] 

[0, 0, 1, 1, 1], [1, 1, 0, 0, 1], [1, 1, 1, 1, 0] 
[0, 1, 0, 0, 1], [1, 0, 0, 1, 0], [1, 1, 0, 1, 1] 
[0, 1, 0, 1, 0], [1, 0, 1, 1, 1], [1, 1, 1, 0, 1]  
[0, 1, 1, 1, 0], [1, 0, 0, 0, 1], [1, 1, 1, 1, 1] 
[0, 1, 1, 1, 1], [1, 0, 1, 0, 1], [1, 1, 0, 1, 0] 

subspace set 7: 
[0, 0, 0, 0, 1], [0, 0, 0, 1, 0], [0, 0, 0, 1, 1] 
 [0, 0, 1, 0, 1], [1, 1, 0, 1, 0], [1, 1, 1, 1, 1] 
 [0, 0, 1, 1, 0], [1, 0, 0, 0, 1], [1, 0, 1, 1, 1]  
[0, 0, 1, 1, 1], [0, 1, 0, 1, 0], [0, 1, 1, 0, 1] 
 [0, 1, 0, 0, 1], [1, 0, 0, 1, 0], [1, 1, 0, 1, 1] 
 [0, 1, 0, 1, 1], [1, 0, 1, 0, 1], [1, 1, 1, 1, 0]  
[0, 1, 1, 1, 0], [1, 0, 0, 1, 1], [1, 1, 1, 0, 1]  
[0, 1, 1, 1, 1], [1, 0, 1, 1, 0], [1, 1, 0, 0, 1] 

 

subspace set 2: 
[0, 0, 0, 0, 1], [0, 0, 0, 1, 0], [0, 0, 0, 1, 1] 
[0, 0, 1, 0, 1], [0, 1, 0, 1, 0], [0, 1, 1, 1, 1] 
[0, 0, 1, 1, 0], [1, 1, 0, 0, 1], [1, 1, 1, 1, 1]  
[0, 0, 1, 1, 1], [1, 0, 0, 0, 1], [1, 0, 1, 1, 0]  
[0, 1, 0, 0, 1], [1, 0, 0, 1, 0], [1, 1, 0, 1, 1]  
[0, 1, 0, 1, 1], [1, 0, 1, 0, 1], [1, 1, 1, 1, 0]  
[0, 1, 1, 0, 1], [1, 0, 1, 1, 1], [1, 1, 0, 1, 0]  

  [0, 1, 1, 1, 0],  [1, 0, 0, 1, 1],  [1, 1, 1, 0, 1] 
subspace set 4: 

[0, 0, 0, 0, 1], [0, 0, 0, 1, 0], [0, 0, 0, 1, 1] 
[0, 0, 1, 0, 1], [0, 1, 0, 1, 1], [0, 1, 1, 1, 0] 
[0, 0, 1, 1, 0], [1, 1, 0, 0, 1], [1, 1, 1, 1, 1]  
[0, 0, 1, 1, 1], [1, 0, 0, 0, 1], [1, 0, 1, 1, 0]  
[0, 1, 0, 0, 1], [1, 0, 0, 1, 0], [1, 1, 0, 1, 1]  
[0, 1, 0, 1, 0], [1, 0, 1, 1, 1], [1, 1, 1, 0, 1]  
[0, 1, 1, 0, 1], [1, 0, 0, 1, 1], [1, 1, 1, 1, 0] 
 [0, 1, 1, 1, 1], [1, 0, 1, 0, 1], [1, 1, 0, 1, 0] 

subspace set 6: 
[0, 0, 0, 0, 1], [0, 0, 0, 1, 0], [0, 0, 0, 1, 1] 
[0, 0, 1, 0, 1], [1, 0, 0, 1, 1], [1, 0, 1, 1, 0]  
[0, 0, 1, 1, 0], [0, 1, 0, 1, 1], [0, 1, 1, 0, 1] 
 [0, 0, 1, 1, 1], [1, 1, 0, 1, 0], [1, 1, 1, 0, 1] 
 [0, 1, 0, 0, 1], [1, 0, 0, 1, 0], [1, 1, 0, 1, 1] 
 [0, 1, 0, 1, 0], [1, 0, 1, 0, 1], [1, 1, 1, 1, 1]  
[0, 1, 1, 1, 0], [1, 0, 1, 1, 1], [1, 1, 0, 0, 1]  
[0, 1, 1, 1, 1], [1, 0, 0, 0, 1], [1, 1, 1, 1, 0] 

subspace set 8: 
[0, 0, 0, 0, 1], [0, 0, 0, 1, 0], [0, 0, 0, 1, 1]  
[0, 0, 1, 0, 1], [1, 1, 0, 1, 0], [1, 1, 1, 1, 1]  
[0, 0, 1, 1, 0], [1, 0, 0, 1, 1], [1, 0, 1, 0, 1]  
[0, 0, 1, 1, 1], [0, 1, 0, 1, 0], [0, 1, 1, 0, 1] 
[0, 1, 0, 0, 1], [1, 0, 0, 1, 0], [1, 1, 0, 1, 1]  
[0, 1, 0, 1, 1], [1, 0, 1, 1, 0], [1, 1, 1, 0, 1]  
[0, 1, 1, 1, 0], [1, 0, 1, 1, 1], [1, 1, 0, 0, 1] 
[0,1, 1, 1, 1],[1, 0, 0, 0,1], [1, 1, 1,1,0] 

  
Acknowledgments 

The author would like to thank Prof. V. C. 
Mavron for reading carefully the manuscript and 
suggesting several corrections and improvements. 
 
References 
 [1] A. N. Al-Kenani and V. C. Mavron, Non-tactical 
symmetric nets, J. London Math. Soc. (2) 67 (2003), 

273–288. 
[2]  D. Jungnickel, On difference matrices, resolvable 

transversal designs and gener- alised Hadamard 
matrices, Math. Z. 167 (1979) 49–60. 

[3] V. C. Mavron and V. D. Tonchev, On symmetric 
nets and generalised Hadamard matrices from affine 
designs, J. Geom. 67 (2000), 180–187. 

[4] V. D. Tonchev, Private communication. 
 
3/28/2013 


