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Abstract: This paper studies the B(m, n) equation with generalized evolution. The ansatz method is applied to extract 
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1. Introduction 

The theory of nonlinear evolution equations 
(NLEEs) has made a remarkable progress in the past 
few decades [1-10]. There has been an overwhelming 
advancement that was observed, especially with 
regards to the integrability aspect of these NLEEs. 
These NLEEs appear in various areas of research. A 
few of them are fluid dynamics, nuclear physics, 
plasma physics and nonlinear optics. Recently there 
has been a need for NLEEs in the Area of biological 
sciences. There are several kinds of NLEEs that are 
studied in this area of research. The nonlinear 
Schrodinger’s equation describes the dynamics of 
solitons in alpha-helix proteins. A lot of results have 
been obtained and reported in this direction [2-7]. 
Very recently, Boussinesq equation (BE) has gained a 
lot of importance in mathematical biology. The 
coupled BE has been studied in the context of 
aneurysm [9]. Another area where BE with dual 
nonlinearity is studied is neurosciences. The BE in this 
context describes the dynamics of solitons in 
biomembranes [3, 8]. Thus BE is gaining profound 
popularity in the area of mathematical biosciences. 
Hence it is imperative to take a deeper look at 
generalized form of BE that will shed some light on 
the applicable areas especially in the context of Life 
sciences. This form of BE is referred to as the B(m, n) 
equation with generalized evolution. The B(m, n) 
equation with generalized evolution term that is going 
to be studied in this paper is given by [2] 
 

( ) ( ) ( ) 0 (1)l m n
tt xx xxxxq aq b q    

Here, the first term is the generalized evolution term, 
while the second term represents the nonlinear term 
and the third term is the dispersion term. Also, 

,a b R  and are constants, while l, m and nZ+. 

This equation is the generalized form of Boussinesq 

equation, where, in particular, The Case l=m=n=1 
leads to the Boussinesq equation. In this paper, the 
general case for l > 1 will be studied. Incidentally, this 
equation, for the special case with l=1 was studied 
before by many authors [6]. 
2. Topological soliton solution 
We assume the soliton solution to be of the form 

( , ) tanh ( ) (2)pq x t A B x vt 
where A, B are free parameters and v represents the 
velocity of the soliton. The exponent p will be 
determined as a function of l, m and n.  
Substituting (2) into (1) yields, 
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The analysis of this equation will be split into the 
following four cases depending on the structure of the 
equality of the exponents 

2.1. Case I: ,l n m n   
In (3) equating the exponents of 2mp   and 

4np  , we get 
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
Equating the coefficients of the function pairs
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2( 1) ( 1)( 2)( 3) 0 (5)m nam mp A np np np np A B       
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Solving (5) and (6) leads 
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Thus the solution of (1) is 
2

( , ) tanh ( ) (9)m nqx t A Bx vt   

Figure 1 describes the topological soliton solution of 

( , )q x t  with the constants 1, 1a b   and the 

parameter values are 2, 1, 0.3.m n v    

 
Figure 1: Topological 1-soliton solution with m=2, 
n=1, a=1, b=-1, v=0.3 
 

2.2. Case II: ,l n m n   
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4np  , implies  
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which imposes ab<0 
 
Thus the topological soliton solution of (1) is 

2

( , ) tanh ( ) (15)l nqx t A B x vt    

Figure 2 describes the topological 1- soliton solution 

of ( , )q x t  with the constants 1, 1a b    and the 

parameters 2, 1, 0.3.m n v    

 

 
Figure 2: Topological 1-soliton solution with l=2, 
m=2, n=1, a=1, b=-1, v=0.3  
 

2.3. Case III: ,l m m n   

  

In (3) equating the exponents of 2pl   and

4np  , yields  
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Equating the coefficients of the function pairs 
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Solving (17) and (18) there exists a zero solution only, 
that is 
 

(19)( , ) 0q x t   
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2.4. Case IV: l m n   
 

In (3) equating the exponents of 2lp   and 4np 
, we get  

2
(20)p
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


where 

(21)l n
In (3) equating the exponents of 2mp   and

4np  , leads to  

2
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where 
(23)m n  

From (20) and (22) it follows that 

(24)l m  

From (21) and (23) it follows that 

(25)l m n 

Thus (24) and (25) are contradiction and there is no 
solution in this case. 
 
3. Singular soliton solution 
 
We assume the singular soliton solution to be of the 
form 

( , ) csch ( ) (26)pq x t A B x vt   

where A And B Are free parameters of the soliton And 
v represents the velocity of the soliton. The exponent p 
will be determined as a function of l, m and n.  
Substituting this hypothesis into (1) gives 
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3.1. Case I: ,l n m n   

  

In (27) equating the exponents of 2mp   and

4np  , leads to 
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Equating the coefficients of the function pairs 
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Thus the singular 1-soliton solution of (1) is 
2

( , ) csch ( ) (33)m nq x t A B x vt   

 

3.2. Case II: ,l n m n   

 

In (27) equating the exponents of 2lp   and 
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Thus the singular 1-soliton solution of (1) is 
2
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3.3. Case III: ,l m m n   
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2 2( 1) ( 1) ( 1)( 2)( 3) 0

(41)

l l nl lp v A l lp aA n np np np bA B       
 

2 2 2 2 2 2 2( 1){ ( 2) } 0

(42)

l l nl pv A l paA n np n p np bA B       

Solving (41) and (42) there exists a zero solution only 
 

( , ) 0 (43)q x t    

 

3.4. Case IV: l m n    
There is no solution in this case as in the case 

of the topological soliton solution. 
 
4. Conclusions 

This paper addressed the B(m, n) equation with 
generalized evolution in the context of topological and 
singular soliton solutions. The results in this paper, 
although eerie similar to a previously published paper, 
will make sense in several other areas of study such as 
life sciences or other branches of biological or clinical 
sciences [2]. The numerical simulations, of this paper, 
support the analytical results that are obtained and 
hence the numeric makes a lot of sense.  

These results will be further analyzed in future. 
For example B(m, n) equation with time-dependent 
coefficients or rather stochastic coefficients will be 
dealt with. These situations will be a much closer to 
reality, especially in the context of biosciences. 
Furthermore, several perturbation terms will be added 
and the corresponding perturbed B(m, n) equation will 
be studied from an integrability stand point. These just 
form a foot in the door.  
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