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Abstract: We report an intelligent image restoration approach by combining the geostatistical interpolation 
technique of punctual kriging and the machine learning approach of adaptive learning. Digital images degraded from 
Gaussian white noise are restored by first utilizing fuzzy logic for selecting pixels that need to be kriged. The 
concept of punctual kriging is then used to estimate the intensity of a pixel. Kriging un-biased estimates mostly 
suffer from occurrence of negative weights and matrix inversion failure problems. Approximation is usually used to 
avoid these problems in punctual kriging based image restoration. Artificial neural networks (ANN) are employed to 
minimize the cost function of the kriging based pixel intensity estimation procedure. ANN, in merit to analytical 
methodologies, avoids both matrix inversion failure and negative weights problems. Experimental results using four 
hundred and fifty images and different image qualitative measures show the superiority of the proposed method 
against adaptive Weiner filter and existing fuzzy kriging approaches. This also validates the use of hybrid 
approaches to image restoration problem. 
[Chaudhry A, Khan A, Kim JY, Niu QQ. Intelligent Image Restoration Approach: Using Neural Networks to 
Eradicate Dilemma in Punctual Kriging. Life Sci J 2013;10(1):1631-1641] (ISSN: 1097-8135). 
http://www.lifesciencesite.com. 240 
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1. Introduction 

Image restoration is a branch of image 
processing that helps restore an image after it has 
been degraded. One of the primary tasks in 
developing image restoration techniques is noise 
removal without destroying edge information. Noise 
smoothing and edge enhancement are generally 
considered as conflicting tasks. Since smoothing a 
region might destroy an edge while sharpening edges 
might lead to amplification of unnecessary noise 
(Voloshynovskiy et al., 2005), therefore, we present a 
new spatial filtering technique; a neural approach 
based on punctual kriging and fuzzy logic control, to 
consider this conflict and to remove noise while 
efficiently preserving the image details and edge 
information. 

Punctual kriging, named after its developer, 
D. G. Krige (1951) is heavily used in mining and 
geostatistics based applications. It is an interpolation 
technique that gives an optimal linear estimate of an 
unknown parameter at a sampling point in terms of 
its known values at the surrounding sampling points 
(Wackernagel and Geostatistics, 2003). The 
estimation involves calculation of the semi-variances 
and modeling of semi-variograms from the sampled 
data. Besides this, kriging has been applied in many 
other fields as well.   

Fuzzy filters have been extensively applied 
in image processing over the last decade. Choi and 

Krishnapuram (1997) devised fuzzy rule based 
multiple filters, derived from the method of weighted 
least squares, for noise removal. Some researchers 
have also investigated the use of fuzzy clustering for 
the removal of impulsive noise (Doroodchi and Reza, 
1996). In (Farbiz and Menhaj, 2000), authors have 
introduced an approach of image filtering based on 
fuzzy logic control. They have shown how to remove 
impulsive noise and smooth out Gaussian noise 
while, simultaneously, preserving image details and 
edges efficiently. Liang and Looney (2003) have 
proposed a competition fuzzy edge detector to 
distinguish the noisy pixels from the edge pixels. 
Further, Khriji and Gabbouj (2004) have recently 
proposed a fuzzy transformation based approach for 
multichannel image processing. Although fuzzy 
spatial filters have been widely used, however, with 
the increase of local information, the number of fuzzy 
rules also increases accordingly. To reduce the 
requirement of such complicated rules, fuzzy control 
is used as a complementary tool along with the 
existing techniques to develop better and accurate 
methods. This is one of the major aims of the 
investigations presented in this paper. 

In the most basic image restoration approach 
using neural networks, noise is removed from the 
image by simple filtering. Cellular neural networks 
by Chua and Yang (1988) have been proposed for 
noise suppression. Improvements have been done for 
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training cellular neural networks that make use of 
genetic algorithms by Zamperelli (1997). Generalized 
adaptive neural filter (Hanek and Ansari, 1996), 
(Zhang and Ansari, 1996) is another interesting 
neural architecture for noise filtering. It consists of a 
set of neural operators based on stack filters (Ansari 
and Zhang, 1993) that make use of binary 
decomposition of gray valued data. 

Combination of order statistic filters and 
Hopfield neural network have also been developed 
and used by Qian et al. (1993) for noise removal and 
image de-blurring. Suetake and Uchino (2007) have 
proposed a radial basis function network and Wiener 
hybrid filter to exploit merits of both for removing 
noise with an arbitrary distribution. Multilevel 
sigmoidal activation functions (Sivakumar and Desai, 
1992) are used by Sivakumar et al. to model a blurred 
and noisy image with many gray levels without any 
knowledge of the statistics of the additive noise and 
blurring function. Widyanto et al. (2005) have 
proposed a method to improve recognition as well as 
generalization capability of back-propagation neural 
network as a hidden layer self-organization inspired 
by immune algorithm. Recently, Alex et al. (2002) 
have introduced a spatially regularized neural 
approach that makes use of local image statistics to 
apply varying regularization to different areas of the 
image by using a parallel implementation of the 
Hopfield neural network. 

Pham and Wagner (2000), (1999) have used 
punctual kriging along with fuzzy sets to enhance 
images corrupted by Gaussian white noise. They 
model soft-thresholding by fuzzy sets. In their 
approach, the pixel intensity in the processed image 
is a weighted sum of the original (noisy) and the 
estimated value through kriging. They have evaluated 
their results qualitatively in comparison with adaptive 
Wiener filter. However, their study does not provide 
any quantitative performance analysis of their 
proposed technique (Mirza and Munir, 2004), 
(Asmatullah, 2007). In addition, they apply kriging to 
all pixels in the degraded image. Considering 33  
neighborhood, inverse of a kriging matrix of size 

99  is required, that can make the filtering process 
computationally expensive. In addition, due to a zero 
diagonal, inverse of the kriging matrix may not 
always be possible. The filter weights also suffer 
from the problem of negative values, and an 
approximation is used to estimate the pixel under 
consideration by renormalizing the positive weights 
which leads to an overall poor performance of the 
filter. This paper is an extension of our previous work 
(Asmatullah, 2007), (Mirza et al., 2007) and aims at 
improving upon the existing fuzzy-kriging approach 
and to avoid various constraints in punctual kriging 
based image restoration by introducing a new hybrid 

technique based on fuzzy inference system, neural 
net and punctual kriging. This paper makes the 
following contributions: 
1. Introduce an effective hybrid neuro-fuzzy based 

kriging methodology for image denoising. 
2. Solve both the problems of matrix inversion 

failure and the negative weights in punctual 
kriging by exploiting learning capabilities of 
artificial neural network (ANN). 

For clarity and understanding, first we present in 
Table 1: 
 

Table 1. The abbreviations used in the text. 
FIS Fuzzy Inference System 
MSE Mean Squared Error 
PSNR Peak Signal-to-Noise Ratio 
wPSNR Weighted Peak Signal-to-Noise Ratio 
SSIM Structure Similarity Index Measure 
VMSE Variogram based Mean Squared Error 
VPSNR Variogram based Peak Signal-to-Noise Ratio 
BPN Back-Propagation Neural Network  

AWF Adaptive Wiener Filter 
PWFK Pham & Wagner Fuzzy Kriging 
SAFK Spatially-Adaptive Fuzzy Kriging 

Rest of the paper is structured as follows. 
Section 2 introduces punctual kriging and 
variograms, fuzzy inference system and fuzzy 
averaging. It also presents some review of ANNs 
used for image restoration and few of the most 
commonly used image quality measures along with 
the proposed variogram based quality measure. 
Section 3 explains the proposed hybrid technique 
based on punctual kriging and the neuro-fuzzy 
approach of adaptive learning. Experimental results 
along with their discussion are presented in section 4. 
Our findings including directions for future work are 
given in section 5. 

 
2. Theory 
2.1. Punctual Kriging and Variograms 

Punctual kriging provides the best linear 
unbiased estimate of an unknown point on a surface 
(El-Sheimy et al., 2005). The estimate is the weighted 
sum of the known neighboring values around the 
unknown point. The weights are determined to 
minimize the variance of the estimation-error. To 
achieve this, kriging uses a variogram model (a 
concept from geostatistics). Based on the variogram 
model chosen, known values are assigned optimal 
weights to calculate the unknown value. Variogram 
presents the variation of semivariance with respect to 
distance from a point. Semivariance provides a 
measure of spatial dependence between samples. 
Semivariance (Wackernagel and Geostatistics, 2003) 
of the samples at lag ‘d’ can be calculated from eqn. 
(1). 
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Different distance metrics can be used to 

identify a group of neighboring samples having the 
same lag. In the present investigations, however, we 
have considered the Euclidean metric as the distance 
measure. The experimental semivariogram is 
obtained directly by using the sample values from the 
experimental data. 

For a given lag ‘d’, it is calculated from the 
available data as: 
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The above expression for experimental 
semivariogram depends upon the spatial 
configuration of the available image data. One has to 
consider different cases, as to whether the data is 
aligned or not and whether it is regularly spaced 
along the alignments. However in the present case of 
digital images, the data is aligned and regularly 
spaced, which makes the estimation of the semi-
variogram easy.  

Punctual kriging is a linear combination of 
the neighboring sample values, as given by eqn. (3). 


i

ii zwẑ                            (3) 

where, iw  are the weights and iz  are the neighboring 

values of z . It is an unbiased estimator if the weights 
add up to 1. This additional constraint on weights is 
given by: 

 
i

iw 1                                    (4) 

Statistical variance is measure of how 
different the estimated value is from its neighboring 
sample values. It can be found using the eqn. (5). 

   zzVareVar ˆ                              (5) 

A number of such linear unbiased estimators 
are available, but we find the best one in the sense 
that it has the smallest estimation variance. Thus, the 
cost function is defined as: 
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where   is the Lagrange multiplier. Differentiating 

the cost function ),(  iw  with respect to 
iw  and 

 , and setting the differential equal to zero and 
rearranging the system of equations, these can be 
written in matrix form as: 
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or in matrix-vector notations 

bAw                                                     (8) 

The A  matrix is symmetric and has zero 
diagonal elements. The elements of the matrix are 
taken from the semivariogram (defined in eqn. (1)) 
for the current point. Solving eqn. (8) gives us the 

optimal kriging weights 
 nwww ,,, 21 

for 

estimating the unknown value ẑ  using its neighbors. 

However, if A  is a singular matrix, punctual kriging 
fails to estimate pixel intensity. 

 
2.2. Fuzzy Inference System and Fuzzy Smoothing 

There are two types of FIS, that are 
commonly used i.e. Mamdani and Takagi-Sugeno 
type (Driankov et al., 1993). Both types of FIS are 
similar in many aspects; fuzzifying the inputs and 
applying the fuzzy operator. The Takagi-Sugeno 
output membership functions are either linear or 
constant and this aspect mainly differs from the 
Mamdani type (Sugeno, 1985).  In the proposed 
approach, the fuzzy output nonlinear membership 
functions are employed to decide the fate of a pixel. 
Therefore, we have used Mamdani type FIS because 
the decision making of whether a pixel needs to be 
estimated or not, depending upon the local properties 
of the neighborhood is a complex problem which 
could not be easily learned by linear membership 
functions (Mirza et al., 2007). Many researchers have 
proposed a variety of fuzzy logic based smoothing 
filters. These include fuzzy rank selection filter, 
fuzzy weighted filter, switching fuzzy filter and fuzzy 
neural network filter (Nachtegeal, 2000), (Liu and Li, 
2004). However, we use a neuro-fuzzy filter in our 
approach.  

In the present work, we have used both 
fuzzy based intelligent decision-making and fuzzy 
smoothing to improve the performance of the 
proposed spatial neuro-fuzzy filter. The main use of 
the fuzzy inference system is to generate a fuzzy map 
from the degraded image, which is then employed by 
the neuro-fuzzy filter to enhance the degraded image. 
Further, fuzzy smoothing is used to smooth out the 
unselected pixels within the proposed filter. 

 
2.3. Artificial Neural Networks 

The functional strength of ANN has already 
been demonstrated by many researchers in different 
areas such as pattern recognition and classification 
(Rudasi and Zahorian, 1991), (El Sherif and Abdel 
Samee, 1994), (Takahashi et al., 1994), (Khan et al., 
2009), (Khan et al., 2008) image restoration 
(Greenhil and Davies, 1994), and machine vision 
(Jochem et al., 1995), (Pomerleau, 1992). 
Consequently, we use ANN to solve the set of 
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equations obtained in punctual kriging. Section 3 
explains the mechanism of exploiting 
backpropagation training algorithm for this purpose 
and thus avoiding the problem of matrix inversion 
failure and negative weights. 

 
2.4. Image Quality Measures 

Besides MSE, PSNR, wPSNR and SSIM 
(Chaudhry et al, 2007), another image quality 
measure in terms of the experimental variograms of 
the original and degraded images is also used. Where 

by, if )(do  and )(d  represent the semi-variances at 
lag d of the original and degraded image respectively, 
then a variogram based image quality measure 
VMSE and VPSNR can be calculated as: 
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Here 
dM is the maximum lag for the images. 

VMSE and VPSNR are global quality measures; 
however, these do take into account the structural 
detail information present in the image. Variogram 
illustrate the variation of semivariance with respect to 
distance from a point, and semivariance provides a 
measure of spatial dependence between pixels. 
Variogram of two different images is different 
because both images have different distribution of 
data that can be verified from figure 4. Further, 
variogram of an image corrupted with white Gaussian 
noise shows the up-lifting of the variogram as the 
noise variance is increased. Furthermore, the general 
shape and structure of the variogram remains the 
same for low noise variances as shown in figure 5. 

The hypothesis in developing this image quality 
measure relies on the idea that if a technique which 
brings the variogram of the restored image very close 
to that of the original image, will perform better. It 
can also be verified from Table 2 and figure 8. 
Statistical meaning of VMSE is to measure the mean 
squared error of the variogram of the estimated and 
the original images. 

 
3. The Proposed Approach 

The occurrence of singular matrix in kriging 
is inherently unpredictable as it depends on the 
variogram for a pixel in the degraded image. The 
variogram itself depends on neighboring values of a 
pixel. Such scenarios should be taken care of 
separately by replacing the processed pixel with a 
value given by fuzzy ‘averaging’ or ‘median’ filter, 
which ever makes the error variance ‘small’. 

Table 2 shows the statistics about the 
number of pixels selected for kriging through fuzzy 
decider. It is observed that for about 88% of the 
selected pixels, the punctual kriging procedure results 
in negative weights. To handle this problem, 
approximation has been used to reinitialize the 
weights i.e. negative weights have been set to zero 
and positive weights have been renormalized. Also, 
for some pixels, the kriging procedure fails due to the 
problem of matrix inversion failure. It can be 
observed from the results shown in Table 2 that the 
actual number of pixels where punctual kriging is 
applied successfully (less than 12%) is far less than 
the pixels where it is unsuccessful (88%). This leads 
us to introduce some methodology in order to apply 
successful estimation of the selected pixel. 

 
Table 2. Statistics of the pixels selected for kriging by the fuzzy decider. The Boat image degraded with white 

Gaussian noise of different variances. 

Statistics of the data 
White Gaussian Noise of different variance 

0.1 0.08 0.06 0.04 0.02 0.01 
No. of pixels advised for kriging 206215 190083 165535 124774 54927 13857 

Matrix inversion failure 672 580 475 357 203 54 
Parseval theorem violation 180767 168841 149946 116606 53329 13561 

 
Fig. 1 shows the basic architecture of our 

proposed methodology. Firstly, we generate a map 
for pixels to be kriged or not through fuzzy decider. 
These selected pixels are estimated using neural 
network based punctual kriging. The pixels that are 

not selected for kriging by the fuzzy decider are 
processed using the robust fuzzy weighted filter. 
Lastly, various image quality measures have been 
employed to analyze the quality of the processed 
image. 
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             Figure 1. Schematic flowchart of the proposed neuro-fuzzy kriging filter 

 
3.1. Details of Different Stages of the Proposed 

Methodology 
In the proposed method, all pixels are not 

blindly kriged. Rather, based on the homogeneity and 
deviation of its local neighborhood, a pixel is selected 
for kriging by a fuzzy logic rule-based system. This 
fuzzy system is called the Fuzzy Decider in our work. 
The inputs to the Fuzzy Decider are a measure of 
homogeneity and DAMdistance which is based on 

the mean and deviation of the 33  window around 
the current pixel. The degree of homogeneity is 
estimated by eqn. (11) as proposed by Tizhoosh 
(2000). The numerator in eqn. (11) is the difference 
of the maximum and minimum gray values in the 

region comprising of the 33  window around a 
pixel, whereas, the denominator is the difference of 
the maximum and minimum gray values in the whole 
image. 















globalglobal

locallocal

H
gg

gg

minmax

minmax                         (11) 

The shapes of membership functions (as 
shown in Fig. 2 & 3) are set empirically to make a 
tradeoff between smoothness and edge preservation. 
The DAMdistance in the rules is simply the 
difference between the gray value of the current pixel 
and the mean gray value of its neighbors. The Fuzzy 
Decider is a basic Mamdani-type fuzzy logic system 
consisting of the following rules. 
If Homogeneity is High or DAMdistance is Low 
then Do Not Perform Kriging 
If Homogeneity is Low or DAMdistance is Very- 
High 
then Perform Kriging 

We have observed that spatial intensity 
variation is effectively represented with the two rules 
based on homogeneity and DAMdistance. The 
membership functions of homogeneity; Low and 
High, have been set as Gaussian (Fig. 3).  The 
effectiveness of High membership function is 
dominant as compared to Low membership function 
in a small range of [0-0.1]. While, the effectiveness 

of Low membership function is dominant in a 
relatively large range of [0.1-1]. Consequently, we 
make it sure that if the intensity of the pixel under 
consideration is close to that of the neighboring 
pixels (homogeneous region) then it is not a noisy 
pixel.  Else, it is strictly considered as a noisy pixel 
and subsequently it is smoothed out.  Similarly, the 
membership functions of DAMdistance; low and 
veryHigh, have been set as Gaussian (Fig. 2).  In this 
case, low membership function is dominant in the 
range [0-87], while veryHigh remains dominant in 
the rage [88-255].  This means that if the difference 
in intensity of the current pixel with that of the mean 
intensity of the rest of 8 pixels is small (less than 87 
in this case), the probability of the current pixel being 
noisy is less and vice versa.  

 
Figure 2. Membership function for DAMdistance 
 

 
Figure 3. Membership function for Homogeneity 
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The proposed method has the following 
three stages. 

 
3.1.1. Generation of Fuzzy Map 

In the first stage, the noisy image is 
presented to the Fuzzy Decider that generates a 
binary image called the fuzzy decision map. This 
decision map is provided to the BPN based 
estimation stage, where the decision of whether to 
estimate or not estimate is enforced. This helps 
reduce the computational time quite effectively. 
 
3.1.2. Employing BPN for Estimation 
             In the proposed approach, we have applied 
multilayer perceptron with back-propagation 
algorithm to estimate the pixels under consideration 
using the concept of punctual kriging. The BPN 
algorithm with modified cost function has been 
applied to train the neural net. 
Architecture of the Network 

The network configuration used for 
estimation of the pixels is given below. 
Input Layer:  Nine neurons 
Hidden Layer:  Thirty five neurons  
Output Layer:  One neuron 
Activation Function: Binary sigmoidal function. 

1
( )

1 exp( )
f x

x

 
  

  
                          (12) 

In our case, the slope parameter 


 is set 
equal to 1. Noisy image sub-pattern of size 3x3 is fed 
as input to the input layer of the neural network; 
neurons in the hidden layer are empirically set to 35. 
Binary sigmoidal function is used as an activation 
function to keep the output of the network within 
range 0 to 1 because this is the required pixel 
intensity range of the estimated image. And to train 
the neural network, 1000 epochs have been run. The 
initial conditions of the neural net have been set 
randomly to avoid its trapping in local minima. 
Cost Function and Updating Weights  

The standard backpropagation algorithm 
consists of two parts: forward-propagation and error 
backpropagation. We modify the error 
backpropagation part to minimize a new cost 
function. The error signal is the variance of the 
output of neural net and the target as given in eq. (5). 
The energy function or the Augmented Lagrangian is 
formed by incorporating the constraints and extra 
penalty terms. We modify the cost function by 
including the variance of estimation error, weights 
related constraint (the sum of weights should be 
equal to one) and extra penalty term. 
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Since there is only one neuron in the output 
layer, so we omit the subscript ‘k’ from eqn. (13) 
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where ‘ ’ is the positive penalty factor. 
Updating Weights in our Proposed Methodology 
Case-I: For output layer 

The correction in output layer weights jw
 is 

proportional to the instantaneous gradient j

L

w




. By 

differentiating eqn. (14) with respect to output layer 

weights jw
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The correction term jw  applied to the output layer 

weights jw is defined by 

j

j

L
w

w
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
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                                     (16) 

where   is learning rate parameter, negative sign in  
eqn. (16) accounts for gradient decent in weight 

space. Replacing the value of 

j

L
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


 in eqn. (16), 
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Similarly, differentiating eqn. (14) with respect to 
 , we obtain 
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1
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j
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 
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 
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Thus, weights and Lagrange multiplier updates will 
be 

( 1) ( ) ( )j j jw n w n w n     
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( 1) ( ) ( ( ) 1)
m
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where,   is learning rate parameter for Lagrange 

multiplier 
Case-II: For hidden layer 

Let us consider Neuron ‘j’ as a hidden node. 
In this case, we do not know what should be the 
desired response of the neuron, so we cannot 

calculate 
 Var(e)

directly. However, from eqn. (13), 

ijij v

eVar

v

L








 )(                                     (20) 

Thus, the correction term ijv  applied to 

the hidden layer weights is defined by 
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Replacing the value of 

ijv

eVar



 )(  in eqn. 

(21), 

( )ij y j inj iv w f x              (22) 

Thus, hidden layer weights update will be 

)()()1( nvnvnv ijijij                   (23) 

Training and Testing of the Net 
In the second stage, three images of 

Cameraman, Lena and PCB are corrupted with white 
Gaussian noise of variance 0.1. The backpropagation 
neural network is trained through supervised learning 
on 3 x 3 image sub-patterns that constitute 10% of 
the flagged pixels of Cameraman, Lena and PCB 
images. However, these 10% 3x3 image sub-patterns 
are randomly picked from the degraded image, so 
that a general pattern of noise is learned by the BPN. 
To perform the image restoration simulation studies, 
we have used our Matlab based implementation of 
BPN. The developed BPN code is more general and 
enough to accept any number of neurons/layers 
(Tizhoosh, 2000), (Asmatullah et al., 2003). 
Simulation study has been carried out on IBM 
compatible Intel P-IV, 2.6 GHz machine. During the 
training phase, in each epoch, we shuffle the order in 
which these sub-patterns are being fed as an input to 
the network to avoid the network being trapped in the 
local minima. After training, the neural net has been 
tested against various images corrupted with white 
Gaussian noise of different variances. 
 
3.1.3. Fuzzy Smoothing of Pixels Not Selected for 

Kriging 
In the third stage, the unselected pixels by 

the Fuzzy Decider are processed using the robust 
fuzzy weighted filter. After the second stage, the 
processed image contains two types of values based 
on the decision map: kriging estimate through neural 
net and original values (unselected pixels). In this 
stage, a fuzzy smoothing is applied on the unselected 
pixels. 

 
4. Results and Discussions 
4.1. Variograms of the Original and Degraded 

Images 
The experimental semi-variograms of three 

different types of images (Boat, Blood cells and 
Lena) have been computed and shown in Fig. 4. The 
shapes of the variograms for all three images near lag 
zero are continuous. This shows that the pixel values 
do not change abruptly at lags near zero. However, 
for Lena and Boat images, fluctuations start 

appearing for lags greater than 10. This shows that 
after a lag of 10 pixels, we enter into a new region. 
Further, in case of Blood cells image, the fluctuations 
appear after a lag of 20 pixels. The variograms show 
sharp changes for larger lags. 

Fig. 5 shows the changes in the experimental 
variogram when a zero mean Gaussian noise with 
various variances is added to a particular image. The 
most interesting aspect to note is the up-lifting of the 
variogram as the noise variance is increased (see Fig. 
5(d)). It is also important to note that the general 
shape and structure of the variogram stays the same 
for low noise variances. The abrupt changes in the 
variogram take place at the same lags. Even for high 
noise variance, the shape of the variogram remains 
similar to that of the original image; however, the 
abrupt changes become more discontinuous. Further, 
near zero lag, the variogram becomes highly 
discontinuous as the additive noise variance is 
increased. These observations have led us to 
introduce the variogram based image quality measure 
VMSE, as introduced in section 4. 
 

 
Figure 4. Experimental variograms of three different 
images 

 
Figure 5. (a) – (c) Gaussian noise corrupted images 
with zero mean and different variances, (d) 
Variograms of Blood cells image with additive 
Gaussian white noise 
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Various image quality measures as 
explained in section 2 are applied to find out the 
quality of the processed image as compared to the 
original image. We have tested the performance of 
our approach by considering two scenarios.  

Firstly, the performance of the proposed 
method has been tested for additive Gaussian white 
noise of different variances for a test image. 
Secondly, the performance is tested for different 
images corrupted with Gaussian white noise of same 
variance. This is because the effect of noise may 
change with the variance of noise as regards the 
visual distortion for the same image. On the other 
hand, same noise may affect different images 
differently as regards the visual distortion. Typical 
results from the Fuzzy Decider are shown in Fig. 6. 
The white pixels are the ones that need to be kriged. 

 

 

Figure 6. Result from Fuzzy-Decider for Cameraman 
image degraded with variance 0.02  
 
4.2. Scenario 1 

In the first case, we have considered Boat 
image as a test image. The image is degraded with 
Gaussian white noise of variances ranging from 0.01 
to 0.15. The results obtained from our approach have 
been compared with that of the AWF, PWFK, and 
SAFK approach. The effect of the additive Gaussian 
noise and its removal by various approaches are 
shown in Fig. 7. Table 3 gives a quantitative 
comparison between different methods in terms of 
MSE, PSNR, SSIM and VMSE. It can be observed 
that the proposed method offers superior performance 
against the white Gaussian noise of different 
variances as compared to rest of the methods. 

The experimental variograms of the original, 
noisy, and restored images through AWF, PWFK, 
SAFK and proposed approach are plotted in Fig. 8. 
The image is corrupted with Gaussian noise of 
variance 0.08. From Fig. 8, it is clear that variograms 
of both the original as well as noisy image retain the 
structural information about the image and differ only 
in the semivariance at different lags depending upon 
the strength of the noise variance. Further, in 
comparison to the variograms produced by other 
methods, our approach produces a variogram that 
overlaps with the variogram of the original image. 
This is also clear from Table 3, where the VMSE is 
minimum compared to the other image restoration 
techniques. 

 

 
Figure 7. Original, noisy and estimated images obtained through PWFK, AWF, SAFK and proposed method 
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Figure 8. Comparison of the variograms of the original, degraded and processed Boat image 

Table 3. Comparison of de-noising methods for Boat image degraded with Gaussian white noise of different 
variances. 

Noise Variance Denoizing Methods Qualitative Measures 
MSE PSNR (db) SSIM VMSE 

0.15 Noisy Image 6241.42 10.18 0.07 30278452.28 
PWFK 2087.54 14.93 0.14 2345782.40 
AWF 1161.52 17.48 0.22 294387.84 
SAFK 1124.02 17.62 0.22 254489.21 
The Proposed Approach 945.70 18.37 0.25 106559.78 

0.14 Noisy Image 5990.28 10.36 0.07 27825746.76 
PWFK 1995.70 15.13 0.14 2012091.24 
AWF 1120.26 17.60 0.22 257448.74 
SAFK 1081.30 17.79 0.23 217489.04 
The Proposed Approach 903.28 18.54 0.26 82650.30 

0.12 Noisy Image 5453.87 10.76 0.08 23363307.80 
PWFK 1785.23 15.61 0.15 1657722.31 
AWF 1027.38 17.97 0.24 240951.37 
SAFK 1004.80 18.11 0.25 183089.34 
The Proposed Approach 813.44 18.99 0.28 74764.22 

0.1 Noisy Image 4829.47 11.29 0.09 18568778.65 
PWFK 1551.88 16.22 0.17 1229102.03 
AWF 921.16 18.43 0.26 233580.38 
SAFK 968.12 18.27 0.26 140906.53 
The Proposed Approach 717.38 19.53 0.30 61488.37 

0.08 Noisy Image 4113.53 11.99 0.10 13719673.94 
PWFK 1305.34 16.97 0.19 834141.63 
AWF 796.36 19.02 0.29 219276.47 
SAFK 788.92 19.16 0.30 91159.31 
The Proposed Approach 609.64 20.18 0.33 44344.71 

0.06 Noisy Image 3300.21 12.95 0.12 8998900.84 
PWFK 1035.00 17.98 0.23 508066.94 
AWF 650.50 19.91 0.32 169069.66 
SAFK 615.90 20.24 0.33 39738.01 
The Proposed Approach 493.35 21.12 0.37 29604.62 

0.05 Noisy Image 2835.77 13.60 0.14 6754789.98 
PWFK 890.39 18.64 0.25 369484.11 
AWF 566.19 20.55 0.35 149426.04 
SAFK 521.50 20.94 0.35 26531.20 
The Proposed Approach 431.36 21.73 0.40 21467.21 

0.03 Noisy Image 1808.72 15.56 0.19 2852017.75 
PWFK 585.86 20.45 0.32 131200.88 
AWF 371.95 22.33 0.44 77494.84 
SAFK 324.14 22.90 0.45 7801.69 
The Proposed Approach 294.27 23.34 0.47 7106.27 

0.01 Noisy Image 632.77 20.12 0.34 369750.96 
PWFK 249.77 24.16 0.49 5559.37 
AWF 143.52 26.34 0.64 6764.69 
SAFK 141.56 26.36 0.64 6391.21 
The Proposed Approach 140.55 26.41 0.64 5905.73 
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The experimental variograms of the original, 
noisy, and restored images through AWF, PWFK, 
SAFK and proposed approach are plotted in Fig. 8. 
The image is corrupted with Gaussian noise of 
variance 0.08. From Fig. 8, it is clear that variograms 
of both the original as well as noisy image retain the 
structural information about the image and differ only 
in the semivariance at different lags depending upon 
the strength of the noise variance. Further, in 
comparison to the variograms produced by other 
methods, our approach produces a variogram that 
overlaps with the variogram of the original image. 
This is also clear from Table 3, where the VMSE is  
minimum compared to the other image restoration 
techniques. 
4.3. Scenario 2 

In the second case, we consider 450 
different images as the test data. These images have 
been corrupted with white Gaussian noise of variance 
0.05. Performance analysis of the above-mentioned 
methods is carried out in terms of average values of 
MSE, PSNR, SSIM, VMSE and VPSNR across 450 
test images as shown in Table 4. The graphical 
representation of various performance measures is 
shown in Fig. 9.  It can be observed that the 
performance of our proposed method is better as 
compared to PWFK, SAFK and AWF in terms of all 
of the image quality measures. 
Table 4. Comparison of different methods across 450 

test images. 
Average Quality 

Measures 
PWFK AWF SAFK 

Neuro-Fuzzy 
Filter 

MSE 910.07 592.18 543.28 475.97 
PSNR 18.554 20.289 20.77 21.295 
SSIM 0.2900 0.4024 0.40 0.4352 
VMSE 235310 135470 132054 120410 
VPSNR 0.00095 0.00211 0.00276 0.00333 

 
Figure 9. Comparison of different methods across test 
data of 450 images. Average values of various 
qualitative measures (note: the different image 
quality parameters are rescaled for elaboration 
purpose) 
 

5. Conclusion 
An effective hybrid image denoising method 

based on the concept of punctual kriging is analyzed. 
Fuzzy IF THEN rules based on region homogeneity 
and deviations, are used to intelligently decide the 
importance of a pixel in view of edge preservation. 
The method further solves the kriging matrix 
inversion and negative filter weights problems due to 
the learning capabilities of the neural net. The overall 
kriging procedure is coupled with a fuzzy smoothing 
filter. Due to the use of Fuzzy Decider, neural net is 
employed to estimate pixels along region boundaries 
and isolated discontinuities. However, for pixels 
inside the regions, away from the region boundaries, 
fuzzy smoothing is used. The results show a marked 
improvement in the performance of image restoration 
scheme as compared to the existing fuzzy kriging and 
adaptive Wiener filter approaches. In future work, we 
intend to increase the number of fuzzy rules for the 
better exploitation of the intensity variation on the 
edges, lines and object boundaries in the image. 
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