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Abstract: The main objective of this paper is to find the solutions of the generalized Ito system by using the following 
three different methods, Sine-cosine method, the homotopy Perturbation method and the differential transformation 
method. Moreover, we will make some comparisons between the solutions in those three methods. 
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1. Introduction 

In the last two decades with the rapid development 
of nonlinear science, there has appeared ever-increasing 
interest of scientists and engineers in the analytical 
techniques for nonlinear problems. The widely applied 
techniques are perturbation methods. But, like other 
nonlinear analytical techniques, perturbation methods 
have their own limitations. All but few [17] perturbation 
methods are based on such an assumption that a small 
parameter must exist in an equation. This so-called 
small parameter assumption greatly restricts 
applications of perturbation techniques. As is well 
known, an overwhelming majority of nonlinear 
problems, especially those having strong nonlinearity 
have no small parameters at all. 

To eliminate the small parameter assumption, in 
1997, Liu [17], proposes a new perturbation technique, 
where an artificial parameter is embedded in an 
equation at its appropriate place, and the embedding 
parameter is used as a “small parameter”. Unfortunately, 
there is an uncertainty about an appropriate artificial 
parameter, and often enough the approximations 
obtained by such method will not be uniform, so that its 
applicability range is severely limited. Just recently, in 
order to be freed from the limitation of “small 
parameter” assumption, Liao [18-19] proposes a new 
technique which, based on homotopy in topology, does 
not require small parameters in equations, using the 
interesting property of homotopy, he transforms a 
nonlinear problem into an infinite number of linear 
problems without using the perturbation techniques. In 
this paper a novel method is successfully handled from 
an entirely different point of view. Namely, homotopy 
perturbation method. By the simple property of 
homotopy, the problem is converted into a special 
perturbation problem with the small embedding 
parameter, which is considered as a small parameter, so 
the method is caught the name of the homotopy 
perturbation method. The proposed method can take full 

advantage of the traditional perturbation methods and 
Liao’s homotopy method. 

 Now, we introduce the exact solutions for the 
generalized Ito system by Sine-cosine method,  
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2. Sine-cosine method 
We consider the following generalized Ito system:  

 

 

 
Now,we can define ,  

                                     (5) 
Take into consideration  (5) , therefore  Eqs (1-4) gives: 

 

 

 

.              (6d)   
Suppose that the general solution of Eqs. (6a-6d) take 
the forms: 

 

, 

, 
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 From (7) and (6a-6d), after some calculation we have 
the system  

 

 

 

 

 
=0                                                               (9) 

 

 

 

 
From (8), (9), (10) and (11) and balance the terms 

of  sine function and equating the exponent of each pair 
of the sine function we have: 

 
Substituting (12) into (8), (9), (10) and (11), 

equating the coefficient of to be zero we 

have: 

 

 

 

 

 

 

 
Solving (13) we obtain that 

, 

 

, 

 

 

 

 

 
Consequently, we can get the value of u, v, w and p as 
follow : 
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3  Homotopy Perturbation Method: 

Consider the system of the form (1) and the exact 
solution of system (1) is   

 

 

 

 
Where   are arbitrary constants 

such that  .  
At  

  , hence system (1) gives: 

 

 

 

 
and the initial data is: 

 

 

 

 
To solve system (17) by means of HPM, we 

choose the initial approximations 

 
and construct the following  homotopy 

 

 

 

 

 
Suppose the solution of  system  (17) has the 

form  
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Substitute (21) into (17) and then Separate all 

coefficients of  powers  of   we get : 
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Solving system (22) we have: 
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The approximate solution of (17) can be 

obtained by setting   and get 

 

  

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1 exact solution and HPM solution for u( x ,t)    at ( -10 ≤   x  ≤10 , -4  ≤   t   ≤  4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2 exact solution and HPM solution for v(x ,t)    at ( -10 ≤   x  ≤10 , -4  ≤   t   ≤  4 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3 exact solution and HPM solution for w(x ,t)    at ( -10 ≤   x  ≤10 , -4  ≤   t   ≤  4) 
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Fig. 4 exact solution and HPM solution for h( x ,t)    at ( -10 ≤   x  ≤10 , -4  ≤   t   ≤  4) 
 
Table 1. Absolute error between exact solution and HPM solution  

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
4  Differential Transformation Method  
Consider the system and the transformations between 
the original function and transformed functions in 
table 1. 

 

 

 

(4) 
We take 

 Eqs.(5)-(8) gives: 
The initial data is: 

 

 

 

 
Using table (1) and taking the differential 
transformation of (1) and ( 4) , we obtain  
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Table 2. Taking into consideration solution (16) of  Eqs. (1) - (4) and without loss the generality   

transformed function original function 

 
 

 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 
From initial data (13) and (16) we have : 
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Substituting from (21) into (17) - (20)   and by 
recursive method we have: 

 

 

 

 
 

 
 

 
 

 

 

 
 

 
Substituting all U(k, h) , V(k, h), W(k, h) and P(k, h) 
into , 

 

 
respectively, we have: 
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Table 1. exact ,numerical solution and error of u(x,t). 

t U exact U DTM Error 
0.01 2.5831083417705645 2.5831083417720760 1.51168×10-12 
0.02 2.5832333349999765 2.5832333350015110 1.53433×10-12 
0.03 2.5833083334375000 2.5833083334392786 1.77858×10-12 
0.04 2.5833333333333335 2.5833333333363520 3.01847×10-12 
0.05 2.5833083334375000 2.5833083334447666 7.26663×10-12 
0.06 2.5832333349999765 2.5832333350186800 1.87033×10-11 
0.07 2.5831083417705645 2.5831083418154352 4.48708×10-11 
0.08 2.5829333599984890 2.5829333600966233 9.81344×10-11 
0.09 2.5827083984317363 2.5827083986291446 1.97408×10-10 
0.10 2.5824334683161230 2.5824334686862720 3.70149×10-10 

 
Table 2. exact ,numerical solution and error of v(x,t). 

Error V DTM V exact t 
3.7792×10-13 -0.6457770854430190  -0.6457770854426411 0.01 
3.83582×10-13 -0.6458083337503777 -0.6458083337499941 0.02 
4.44644×10-13 -0.6458270833598196 -0.6458270833593750 0.03 
7.54619×10-13 -0.6458333333340880 -0.6458333333333334 0.04 
1.81666×10-12 -0.6458270833611917 -0.6458270833593750 0.05 
4.67582×10-12 -0.6458083337546700 -0.6458083337499941 0.06 
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1.12177×10-11 -0.6457770854538588 -0.6457770854426411 0.07 
2.45336×10-11 -0.6457333400241558 -0.6457333399996222 0.08 
4.93521×10-11 -0.6456770996572861 -0.6456770996079341 0.09 
9.25372×10-11 -0.6456083671715680 -0.6456083670790308 0.10 

 
Table 3. exact ,numerical solution and error of 
w(x,t). 

t W exact W DTM Error 
0.01 4.0001124957813845 4.0001124957806290 7.5584×10-13 
0.02 4.0000499991666790 4.0000499991659115 7.67386×10-13 
0.03 4.0000124999479170 4.0000124999470280 8.89067×10-13 
0.04 4.0000000000000000 3.9999999999984905 1.50946×10-12 

0.05 4.0000124999479170 4.0000124999442830 3.63354×10-12 
0.06 4.0000499991666790 4.0000499991573270 9.35163×10-12 
0.07 4.0001124957813840 4.0001124957589500 2.24345×10-11 
0.08 4.0001999866674220 4.0001999866183560 4.90656×10-11 
0.09 4.0003124674507990 4.0003124673520950 9.87042×10-11 
0.10 4.0004499325086050 4.0004499323235310 1.85074×10-10 

 
Table 4. exact ,numerical solution and error of p(x,t). 

t P exact P DTM Error 
0.01 12.374325025311693 12.374325025316228 4.53504×10-12 
0.02 12.374700004999928 12.374700005004533 4.60432×10-12 
0.03 12.374925000312500 12.374925000317836 5.33618×10-12 
0.04 12.375000000000000 12.375000000009056 9.05587×10-12 
0.05 12.374925000312500 12.374925000334300 2.18012×10-11 
0.06 12.374700004999928 12.374700005056038 5.61098×10-11 
0.07 12.374325025311693 12.374325025446305 1.34612×10-10 
0.08 12.373800079995467 12.373800080289870 2.94403×10-10 
0.09 12.373125195295207 12.373125195887434 5.92227×10-10 
0.10 12.372300404948370 12.372300406058816 1.11045×10-9 
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