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0 – Introduction: 

There are many phenomena in science and 
engineering that can be formed as differential 
equations together with boundary conditions (BCs) 
and for most of them their analytic solutions can not 
found. So, they can numerically be approximated by 
numerical methods. The finite difference methods 
(FDMs) are one of the ancient and simplest 
approximation methods that are applicable on most of 
the PDEs. The two main disadvantages of the FDMs 
are: its nodal or point-wise approximation (i. e., 
finding approximations on discrete points) and the 
other is restriction of the method on problems with 
rectangular, square and circular domains [8]. 
The finite element methods (FEMs) [18], finite 
volume methods (FVMs) [11], multi-grid methods 
(MGMs) [19] and mesh-free methods [10] are the 
other approximation methods [20]. 

The weighted residual methods (WRMs) that 
belong to FEMs have not the two mentioned FDM 
disadvantages. The collocation method is one of the 
WRMs in which its weight is Dirac delta distribution, 
and here, we employed and used of it and is usually 
used for approximating ODEs, PDEs and integral 
equations (IEs). As stated, unlike the FDMs, the 
WRMs give a continuous function solution in spite of 
solutions on discrete points [6]. 

In 1782, Legendre polynomials introduced 
[23] as the coefficients of Newton potential problem. 
In 1984,  Bellen used Legendre orthogonal 
polynomial for one-step collocation method and for 
solution of delay differential equations (DDEs) [1]. 

In 1992, Mullenheim gave little attention on 
solving 2nd order nonlinear BVPs with Dirichlet, 
Neumann and Robin BCs [9], then in 2007, BVPs 
together with Neumann BCs with Splines are 
employed [14].  

In [2], a typical linear mode example using 
collocation method examined.  

In 2011, ShafigulIslam et. al [15], studied 
BVPs with different BCs (Dirichlet, Neumann and 
Robin) using Galerkin method. Also, the BVPs in 
linear mode using the FDMs investigated in [22] and 
in refs. [13] and [23] the Spline polynomials which 
are smooth up to order 2 and can be linearly 
expanded by the Legendre polynomials were used.  

The Legendre polynomials can be used for 
approximating ODEs and also this polynomial can be 
applied on polar form of the Laplace equation. 

The subjects of this paper are as follows: Section 
1 deals with IBVP formulations according to the 2nd 
order Legendre polynomials and in section 2, the 
collocation method for approximating IBVP is 
explained. Some numerical experiments are 
presented in Section 3 together with Legendre 
polynomials and their errors.  

In the final Section, some results, concluding 
remarks, research ideas and propositions will be 
given. 
 
1 -Legendre polynomials: 

The orthogonal polynomials play the most 
important role in the spectral and generalized fourier 
methods. So, it is necessary to have a view  on their 
relevant properties. Our starting point is being 
generated orthogonal polynomials by a recurrence 
relations, which leads to some  useful formulas such 
as Christoffel-Darboux and Rodrigues formula [7].  
The Legendre polynomials are one of the most 
famous orthogonal polynomials. The Legendre 
functions ��(�) , are solutions of the following 
Legendre ODE for different integer �: 
�

��
�(1 − ��)

�

��
��(�)�+ �(� + 1)��(�)

= 0.																																		(1 − 1) 
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The general solution of the Eq. (1-1) is (see [7] and 
[23]): 
��(�)

=
1

2��!

��

���
[(��

− 1)�].																																																														(1 − 2) 
After expanding the expression of the Eq. (1-2), the 
Legendre solutions will be: 

��(�) =
1

2�
� �

�

�
�

�

�� �

(� − 1)��� (� + 1)�  

= � �
�

�
�

�

�� �

�
− � − 1

�
��
1 − �

2
�
�

= 2� � ��
�

�� �

�
�

�
��

� + � − 1
2
�

� .														(1 − 3) 

The Legendre polynomials are defined in the 
interval [− 1,1] and their weights are � (�)≡1. They 
are also orthogonal and continuous [7], so, they are 
good candidate for base functions of the collocation 
method that we applied on our problems. 
In general, a two point 2nd order differential equation 
(linear or non linear) is in the following form [24]: 
�′′(�) = �(�,�,�′),																						� ≤ �

≤ �,													(1 − 4�) 
���(�)− ���′(�) = �,															|��|+ |��|

≠ 0,					(1 − 4�) 

���(�)+ ���
′(�) = �,															|B�|+ |B�|
≠ 0,							(1 − 4�) 

and its linear form is as follows: 
�′′(�)− �(�)	�′(�)− �(�)	�(�) = �(�),												�

≤ � ≤ �,												(1 − 5�) 
���(�)− ���′(�) = �,													|��|+ |��|

≠ 0,																																	(1 − 5�) 
���(�)+ ���

′(�)= �,													|��|+ |��|
≠ 0,																																	(1 − 5�)	 

where �(�), �(�) and �(�) are continuous functions, 
and the parameters ��, ��, �� , ��  are constants. The 
two problems (1-4) and (1-5) are called IBVPs 
(mixed BCs) and according to Picard-Lindelof 
theorem, if �(�) be continuous and Lipschitz, these 
equations will have a unique solution [5].  
The problem (1-5) in operator form is as follows:  
Let, � = {����[�,�]:���(�)− ���

′(�) =
�	&	���(�)+ ���

′(�) = �} , �:� → �[�,�]  and 

� =
��

���
− �(�)

�

��
− �(�), thus the problem (1-5a) is 

equivalent to: 
�(�(�)) = �(�).																																										(1 − 5�) 
Let the Legendre polynomials are given on the 
interval [− 1,1] . By substitutions �  and � =
(���)(���)

�
+ � , the interval [− 1,1] can be mapped 

into the interval [�,�], and by using this change of 
variable, the Eq. (1-5) will be changed as follows: 

�′′(�)− �̅(�)�′(�)− ��(�)�(�) = �̅(�),										− 1
≤ � ≤ 1,									(1 − 6�) 

���(− 1)−
2��
� − �

�′(− 1)

= �,																																																															(1 − 6�) 

���(1)+
2��
� − �

�′(1)

= �,																																																															(1 − 6�) 
and the coefficient functions will be changed into the 
following forms: 

�̅(�) =
���

�
� �

(���)(���)

�
+ ��, 

��(�) =
(���)�

�
� �

(���)(���)

�
+ ��, 

�̅(�) =
(���)�

�
��

(���)(���)

�
+ ��. 

2 - The collocation method and its application: 
The collocation idea is:  

1. the selection a finite-dimensional space of 
candidate base functions (usually, a complete 
polynomials up to a certain degree).  
2. the selection of a finite number of points 
distributed irregularly in the domain area (called 
collocation points). The experiments show that points 
must have more compact in high gradient part of the 
domain for getting better approximation.  
3. and then selecting an approximation expansion 
function which satisfies the given equation at all of 
the collocation points.  

As considered in Section 1, the operator � is 
linear and �  the solution space of the problem (1-5) 
is a real vector space, consequently for finding an 
approximate solution of the Eq. (1-5d), and the linear 
and transformed IBVP (1-6), in a � + 2 dimensional 
subspace � ⊂ � , and by applying the collocation 
method, we do as follows [17]: 
Let, 

���(�) = � ��

���

�� �

��(�),																																	(2 − 1) 

be the selected approximation, such that in which �� ,  

� = 0,1,…,� + 1 are unknown constants, and ��(�), 

� = 0,1,…,� + 1  are elements of approximating 
� + 2 dimensional subspace � of � . The experiments 
showed better results can be obtained by relating the 
collocation points to the structure of classical 
orthogonal polynomials such as Chebyshev, Hermite, 
Bessel, Lagurre and Legendre polynomials [7].  
The selected collocation points are: �� = − 1 , 
t��� = 1 , and for i	= 1,...,� , ��  is chosen as the 
roots of the base functions (here, the Legendre 
functions) of order �  and for finding residual and 
spectral approximation, we must express the 
derivatives of ���(�) in terms of � at the collocation 
points ��. Thus, the derivative relations of the Eq. (2-
1)  are: 



Life Science Journal 2013;10(1)                                                          http://www.lifesciencesite.com 

1006 

�� ′
�(�) = � ��

���

�� �

�′
�
(�),					�� ′′�(�) = � ��

���

�� �

�′′
�
(�),		 

and then, the application of the collocation method on 
the Eq. (1-6) and the collocation points �� , i =
0,1,...,n + 1 will be in the following forms: 
�� ′′
�(��)− �̅(��)	��

′
�(��)− ��(��)	��(��)− �̅(��) = 0,
− 1 ≤ �� ≤ 1, � = 1,2,…,�,
(2 − 2�)				 

�����(��)−
2��
� − �

�� ′
�(��)− �

= 0,																																																															(2 − 2�) 

�����(����)+
2��
� − �

�� ′
�(����)− �

= 0,																																																																(2 − 2�) 
This means that residual of the equation must be 

zero in all of the collocation points.  
The Eq. (2-2) tends to a diagonally dominant 

linear system [3]. Therefore, this system will have a 

unique solution, ������(��)� ≠ 0  for �	,� = 0,1,

2,…,� + 1. Consequently, the base function system 
{��(�),��(�),…,����(�)} is linearly independent 
over [-1, 1]. By solving this system using direct (such 
as: L-U) or iterative methods (such as: Jacobi, Gauss-
Seidel or SOR) [3], the approximate solution ���(�) 
will be obtained [24]. As stated before this, the 
suitable selection of the collocation points for 
obtaining an acceptable precision approximate 
solution ���(�) is very important. Also, by finding 
high precision roots of the Legendre polynomials, the 
accuracy of the approximate solution will be raised. 
The coefficient matrix of the collocation system is 
always full and dense with a condition number 
behaving like O( ��� ) (m is the order of the 
differential equation) [12]. 
3 - Numerical experiments: 

In this section, we try to approximate some 
IBVP together with various BCs. In examples (3-1) 
and (3-2), the roots of the Legendre polynomial 
��(�)  will be used as the collocating points of 
approximation and in example (3-3), the roots of the 
Legendre polynomial ���(�) will be used.  

We used the Mathematica 8.01 for programming 
and numerical results were shown by a table and a 
graph. Let, �(�) denote analytical solution, ���(�) its 
related approximation, and ‖�(�)− ���(�)‖  be 
approximation error. 
Example 3-1: In this example, we consider the 
following BVP with Dirichlet BCs [16]. 
���

���
+ � = �����,																																						0 ≤ � ≤ 10, 

�(0) = �(10)= 0. 
Its equivalent and transformed equation on the 
normalized interval [-1, 1] is: 

���

���
+ 25� = 25(� + 1)����(���),							− 1 ≤ � ≤ 1, 

�(− 1)= �(1) = 0, 
and the analytical solution of the problem is: 

�(�) =
1

50
���(���)���10���(6 + 5�)����10

− ��(���) ���(5 − 5�)

− 121��� ����5(1 + �)��. 
Using the expansion (1-2), and applying the 

collocation method, its approximate solution will be 
found and its result comes in Table 1 and Figure 1 as 
is shown. 

Table 1 shows the approximate solution and the 
absolute error of the example (3-1) 

The graph that compares the analytical and 
approximate solution of the example (3-1) is as 
follows: 
 
Figure 1 shows a comparison between analytical and 
approximate solution (dashed) of the example (3-1). 
Example 3-2: Here, we consider a problem with 
Neumann BCs [14]. 
���

���
+ � = − 1,																											0 ≤ � ≤ 1, 

�′(0) =
������

����
,							�′(1) = − �′(0). 

The transformed equation into the interval [-1, 1] will 
be as follows: 
���

���
+
1

4
� = −

1

4
,			− 1 ≤ � ≤ 1,	 

�′(0) =
1 − ���1

2���1
,				�′(1) = − �′(0), 

and its analytical solution is: 

u(�) = − 1 + Cos �
�

2
� Sec �

1

2
�. 

The result of the numerical solution of this problem is 
given in Table 2 (Table 2: The approximation 
solution and its absolute error of the example (3-2)). 
The graph for comparing analytical and approximate 
solution of the example (3-2) is showed as follows: 

 
Figure 2: Graph of comparing between analytical and 
approximate (dashed) solution of the example (3-2).  
Example 3-3: Here we applied the method, to the 
following problem with mixed or Robin BCs [19]. 

−
���

���
+ � = 2	����,										

�

2
≤ � ≤ �,				 

�′ �
�

2
�+ 3� �

�

2
� = − 1, 

�′(�)+ 4�(�)= − 4. 
The transformed form of the problem on the interval 
[-1, 1] is as follows: 
���

���
−
��

16
� = −

��

8
����

�

4
� +

3�

4
�,														− 1 ≤ �

≤ 1, 
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		3�(− 1)+
�

�
�′(− 1) = − 1, 

		4�(1)+
4

�
�′(1) = − 4, 

and its analytical solution is: 

�(�) = −
����

�
4
�� + sin �

�
4
��

√2
. 

The numerical result of the method applied 
on this problem is specified in Table 3: 

Table 3 shows the approximate solution and 
its absolute error of the example (3-3). 
The geometrical comparison between related 
analytical and approximate solution is as follows: 

Figure 3: The comparison between analytical and 
approximate (dashed) solution of the example (3-3).  

The approximate solutions, shown in the Tables 
1 and 2 are obtained based on the use of ��(�) and in 
Table 3 obtained based on the use of ���(�) and the 
accuracy is observed nearly 3, 4 decimal places, 
respectively. 

The use of uniformly distributed collocation 
points, gives more error than distribution of nodes by 
Legendre polynomial roots.  

In our final experiment, we re-approximated the 
example (3-3) by uniformly spaced points (ℎ = 0.2, 

ℎ =
���

���
). The error in uniformly spaced data points 

at: -0.9 and 0.9 is: 2.539×10��  and 6.214×10�� 

respectively, but as shown in the example (3-3) are: 
4.727×10�� and 3.405×10��. 
4 – Conclusion: 

In this paper, we presented a numerical 
method in which the Legendre polynomials as the 
approximation functions and the collocation method 
was used, and also other special functions or 
orthogonal systems can be used. The more number of 
base functions tend into the higher accuracy 
approximation ���(�). The choice of the collocation 
points (situation and the numbers) is an important 
and influential factor on the final result and here, we 
applied the roots of the orthogonal Legendre 
polynomials as the collocation points and found an 
acceptable approximation. Instead of the Legendre 
functions, one can employ other functions such as 
special functions and also orthogonal wavelet 
functions [4]. This paper was limited on one-
dimensional problems. Therefore it can be extended 
to higher dimensional problems. Instead of the 
collocation method, the other weighted residual 
methods such as: Galerkin, Petrov-Galerkin, least 
square and sub-domain methods can be applied. The 
use of the full matrix systems have computationally 
high prices, therefore by selecting locally compact 
support base functions, one can tend this method to 
sparse and lower price matrices.  

 
Table 1: The approximate solution and the absolute error of the example (3-1) 
			�																																								���(�)																																				�(�)																																	‖�(�)− ���(�)‖ 

 -1.0                                 0.002943                             0.000000                               2.943×10�� 
 -0.8                                 0.038872                             0.044751                               5.878×10��  
 -0.6                                 0.061156                             0.060916                               2.401×10�� 
 -0.4                                 0.044200                             0.040113                               4.086×10�� 
 -0.2                                 0.006194                            -0.001267                               7.462×10�� 
  0.0                                -0.022633                            -0.030595                               7.961×10�� 
  0.2                                -0.022922                            -0.025449                               2.527×10�� 
  0.4                                 0.002108                             0.006487                                4.379×10��  
  0.6                                 0.028305                             0.034172                                5.866×10�� 
  0.8                                 0.027686                             0.031265                                3.578×10�� 
  1.0                                 0.002943                             0.000000                                2.943×10�� 

 
Figure 1: A comparison between analytical and approximate solution (dashed) of the example(3-1). 
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Table 2: The approximation solution and its absolute error of the example (3-2) 

 
 

 
Figure 2: Graph of comparing between analytical and approximate (dashed) solution of the example (3-2).  
 
Table 3: The approximate solution and its absolute error of the example (3-3). 
�																																									���(�)																															�(�)																															‖�(�)− ���(�)‖ 
-1.0                        -0.004880                         0.000000                          4.880×10�� 
-0.8                                -0.151673                        -0.156434                          4.761×10�� 
-0.6                                -0.304992                        -0.309017                          4.025×10�� 
-0.4                                -0.450677                        -0.453990                          3.313×10�� 
-0.2                                -0.585051                        -0.587785                          2.734×10�� 
 0.0                                 -0.704937                        -0.707107                         2.169×10�� 
 0.2                                 -0.807283                        -0.809017                         1.734×10�� 
 0.4                                 -0.889723                        -0.891007                         1.283×10�� 
 0.6                                 -0.950222                        -0.951057                         8.349×10�� 
 0.8                                 -0.987386                        -0.987688                         3.023×10�� 
 1.0                                 -1.000820                        -1.000000                         8.200×10�� 
 
 

 
Figure 3: The comparison between analytical and approximate (dashed) solution of the example (3-3).  
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x
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0.2

ux
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u


nx

�																																				���(�)																													�(�)																								‖�(�)− ���(�)‖ 

-1.0                           -0.006385                     0.000000                      6.385×10�� 
-0.8                            0.043579                     0.049543                      5.964×10�� 
-0.6                            0.083858                     0.088600                      4.741×10�� 
-0.4                            0.113350                     0.116780                      3.429×10�� 
-0.2                            0.131700                     0.133801                      2.101×10�� 
0.0                             0.138743                     0.139494                      7.508×10�� 
0.2                             0.134390                     0.133801                      5.892×10�� 
0.4                             0.118671                     0.116780                      1.890×10�� 
0.6                             0.091734                     0.088600                      3.143×10�� 
0.8                             0.053833                     0.049543                      4.290×10�� 
1.0                             0.005151                     0.000000                      5.151×10�� 
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