
Life Science Journal 2013;10(1)                                                          http://www.lifesciencesite.com 

 

994 

 

Space Adaptive Numerical Scheme to Solve Black-Scholes Equation. 
 

1M.Ashraf, 1N. A. Mir, 2S. Ahmad. 
 

1Department of Mathematics, Riphah International University, Islamabad, Pakistan, 
2Informatics complex of computer and control, Pakistan Atomic Energy Commission, Islamabad. 

muhammad.ashraf91@yahoo.com 
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1. Introduction 

In the present world of finance, there are many 
types of financial instruments (Duffy, 2006) which go 
by the name of Options. Options are traded on all of 
the world's major exchanges. Binary options or digital 
options (Khaliq, et al, 2007) are not only very popular 
in the over-the-counter(OTC) markets but also 
important tools for designing more complex financial 
derivatives (Wilmott and Howison, 1996). For 
example, holding the simplest cash-or-nothing call 
option pays a predefined cash amount at the expiry 
date if the option is in-the money. Therefore, at the 
strike price, the payoff has a discontinuity. In this 
work, we will focus on digital call options  for one 
asset. 
    Black-Scholes and Merton (Black and Scholes, 
1973) derived a celebrated partial differential 
equation. The Black-Scholes model is the best way to 
calculate the price of an option (Cox et al, 1979). In 
this article numerical methods ( Smith, 1985) will be 
used to solve the finite difference equation 
(Courtadon, 1982) of Black-Scholes. Even though the 
solution to the Black-Scholes equation is smooth, the 
final condition has discontinuity which produces 
oscillation in the numerical solution. In order to cure 
this oscillation from the initial discontinuities, there 
have been studied different numerical methods (Dura 
and Mosneagu, 2010. Zhu et al, 1988) in many 
application areas. Finite difference methods (Khaliq et 
al, 2008. Wade et al, 2007) with variable space-steps 
are proposed in order to valuate binary options.   
   The purpose of this paper is to develop efficient and 
accurate numerical methods to price options (Zhongdi 
and Anbo,  2009) with payoff containing 
discontinuities. For standard binary options, the 
discontinuity lies only in the initial condition, 
therefore we need to use small space-steps initially 
then use bigger space-steps to keep the efficiency. In 

proposed study, we focus on adaptivity (Hongjoong, 
2011) for space-steps in order to see effects of 
variable space-steps. In this study, several numerical 
tests show that the adaptive finite difference methods 
approximate the solution more efficiently than 
uniform finite difference methods. 
  2.     Proposed Discretization  
        Let S(t) be the price of the underlying asset at  

time t (0 )Tt   with a given expiry date T, constant 

interest rate r >0 and a constant volatility > 0 . The 

value, ( , )V S t  of binary options under classical 

Black-Scholes model can be computed by solving the 
following one asset partial differential equation, 
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  Digital call (cash-or-nothing) options for one asset  
pay a cash amount A at expiration if the option is in-
the-money  that is, 

   
  if  S E

0  o th erw ise( ) = ,AS   

where E >0 is a predefined exercise price and ( ),S is 

the payoff function at expiry date T. 

The interval  0,T  is divided into M equally sized 

subintervals of length .t  The price of underlying 
asset will take the values in the unbounded interval 

[0, ).  However, an artificial limit maxS  is 

introduced. The size of maxS  requires 

experimentations; but normally maxS  is taken around  

three to four times the exercise price E. The interval 

0,
max

S 
 

 is divided into N subintervals of length 

.S
i

  The asset price at an arbitrary point n will be 
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Using this nomenclature, we can say that  

= == 0
N SnN n

  S .max    where S
i

  are the non-

uniform space-steps. Hence, the space 

 0, 0,
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 is approximated by a grid 
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uniform spacing n  = .nSn   Let 
m
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numerical approximation of  ., tmV n   The time 
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The first spatial derivative SV  is given as  
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The second spatial derivative SSV  is given by 
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where a space-step size nnn SSS  1=  is assumed 

uniform but nS  can be different in our case. The 

above equation (2.3) and equation (2.4) can be easily 
modified for variable spacing as follows, 
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In digital option the discontinuity appears at exercise 
price. In the proposed procedure, dense grid is 
generated in the vicinity of the exercise price and 
coarse grid is generated else where. Hence, the whole 
space can be divided into three patches of points as 
shown in figure. The patch I and patch III has coarse 
grids while in patch II the dense grid is generated. The 
grid in each patch is uniform therefore, the order of 
the error in each patch is the same as for uniform grid 

i.e. 2( ) .o S
n

 But at the two intersection points the 

order of the numerical scheme is reduced. 

 

Figure 1. Patch II is in the vicinity of discontinuity 

 

2.1 Adaptive Explicit Finite Difference Scheme 
   Following is the discretized Equation (2.1) for non 
uniform grid : 
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Simplifying and re-arranging, the above equation 
takes the form:
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The  term 1m
nV  at 1m  in explicit form is evaluated 

using the terms m
n
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The equation (2.5)  can then be written in matrix form 

as : 
1 = .m m mV A V Z        

We observe that at every time-step 1,m  the 

approximate solution can be obtained from the above 

matrix equation. The values ,0
nV  ,0
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m

NV  with  

= 0, ,n N  and = 0, ,m M  are known from initial 

and boundary conditions. By taking L 2  norm, 

following condition of stability can be deduced, 
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2.2 Adaptive Backward-Euler Finite Difference  
Scheme 
     In this method, we use forward difference for V 
first time derivative, central difference for first S 
derivative and for second S derivative, we first use 
forward difference and then backward difference: 
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       Using the above substitutions, equation (2.1) 
takes the form : 
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 After simplifying and re-arranging, the above 
equation takes the form : 

2 2 2 2
11

2 2( ) 1

t t
mn n r t V
nS SS n nn

     
          

 

2 2
1=

12
1 1

r t t
m mn nV V
n nS S S S

n n n n

    
            

 

2 2
1.

122( ) 1

t r t
mn n V
nS SS n nn

    
          

 

This system of equations can be solved by Gauss-

Seidel method. The values  ,0
nV ,0

mV m
NV  with  

= 0, ,n N  and = 0, ,m M  are known from initial 

and boundary conditions. 
3. Numerical Experiments 
       We demonstrate some numerical experiments for 
one asset for the digital call option. In digital call 
option, the payoff is acting as the initial condition and 
has a piecewise discontinuity at the strike price. For 
digital call option or binary option (Khaliq et al, 

2007), the payoff is 0  before the strike price and A , 
after the strike price. It is also known as cash or 
nothing option. A digital option differ from European 
call option in that the payoff at expiry is 

, if S(t) ,

0, if S(t) < ,

A E

E





 

         where > 0,A  is fixed. Such type of options are 

usually traded between a bank and a customer. 
We use the following parameters for the computation 
of the cash-or-nothing option for one asset: T=0.5, 
r=0.1,  =0.4 ,  E=15, S=40, A=1, with N=20, 40, 60, 

80, 100, 120, 140, 160 grids in space, different 
schemes are applied for option valuation. Tables 1 and 
2 show the option prices for an at-the-money(S=E) 
cash-or-nothing option from various schemes. In 
Tables 1 and 2, N and L show the number of points 
for uniform and variable space-stepping respectively, 

,
C

u e
 shows the option price for uniform spacing and 

,
C

a e
 shows the option price for adaptive spacing for 
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Explicit scheme. 
,

C
u i

 and 
,

C
a i

 are option prices 

for Implicit scheme. It can be observed that same 
option values are obtained by using less number of 
points in adaptive space-stepping as compared to 
uniform space-stepping and adaptive space-stepping 
converges more rapidly than uniform space-stepping 
 
Table 1 Comparison between Explicit and adaptive 
explicit schemes option values  

N  
,

C
u e

    dif  L  
,

C
a e

    dif 

20   0.5777   ---    25   0.5392   
40   0.5347   0.0430   50   0.5133  0.0259 
60   0.5186   0.0261   75   0.5010  0.0082  
80   0.5116   0.0070   100   0.5010  0.0041  

100   0.5068   0.0048   125   0.4986  0.0024  
120   0.5040   0.0028   150   0.4970   0.0016  
140  0.5018  0.0022   175   0.4959  0.0011  
160  0.5003  0.0015   200   0.4950  0.0009 

 
Table 2 Comparison between Implicit and adaptive 
implicit schemes option values  

N 
,

C
u i

 dif L 
,

C
a i

 Dif 

20 0.5781  25 0.5393  
40 0.5349 0.0432 50 0.5134 0.0259 
60 0.5187 0.0162 75 0.5052 0.0082 
80 0.5117 0.0070 100 0.5011 0.0041 

100 0.5069 0.0048 125 0.4987 0.0024 
120 0.5041 0.0028 150 0.4971 0.0016 
140 0.5018 0.0023 175 0.4959 0.0012 
160 0.5003 0.0015 200 0.4951 0.0008 

 Figure 2, depicts the grid for initial 
conditions for one asset. Here, we refined interval [E-
 , E+  ] around the strike price. We choose 

( epsilon) as 5 and E=15. The grid is refined in the 

interval 
 [E-  , E+  ] to cure oscillations caused by 
discontinuity. 

  

Figure 2 Payoff function for one asset digital 
call option. 

          Figure 3, represents graph of payoff function of 
digital call option for one asset. As is obvious from 
graph, in uniform coarse grid, in adaptive grid and in 
uniform dense grid, we have taken 50, 38 and 70 
number of points respectively. It is clear that adaptive 
grid solution is very close to uniform dense grid 
solution but uniform coarse grid solution is away from 
uniform dense grid solution. 

 
Figure 3 Simulation using adaptive explicit method 
 
        Figure 4, represents the Gamma plot for exact 
solution, uniform coarse/dense grid and adaptive grid 
solutions for one asset by explicit method. Here also, 
we see that adaptive grid plot matches with the plot of 
uniform dense grid and plot of exact solution. 

 

 Figure 4 Gamma plot for T=0.5, r=0.1,σ 
=0.4, E=15, S=40, A=1 

 

           From figures, it is obvious that in adaptive 
space-stepping, we used less number of points but 
solution is nearly similar to that of exact solution but 
in uniform space-stepping, the solution does not match 
to exact solution when we use less number of points. 
Similar results can be obtained for space-stepping by 
Backward-Euler scheme. This shows that adaptive 
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space-stepping is much better than uniform space-
stepping. 
 
4.   Conclusions  
         We have developed an efficient finite difference 
numerical technique for one asset to cure oscillations 
in the solution. The computational domain is 
descretized embedding more points near the 
singularities and coarse grid otherwise. We have to 
modify the numerical scheme to deal with the uneven 
spacing of the points. The stability analysis of explicit 
scheme is also performed for one asset Black-Scholes 
equation. The results are presented for an adaptive 
explicit scheme, and adaptive implicit scheme. The 
oscillations at discontinuities are eliminated by using 
adaptive space-stepping. The adaptive space-stepping 
speeds up the solution convergence as compared to the 
uniform space-stepping. The adaptive finite difference 
scheme needs less points in its computation and hence 
is very efficient. 
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