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Abstract: The family case clusters of highly pathogenic avian influenza A subtype H5N1 in Thailand (2004) and in 
Sumatra, Indonesia (May 2006) that were due to human-to-human transmission attracted the attention of the 
responsible agencies. If the H5N1 virus gain the ability of sustained human-to-human transmission a pandemic 
could result with potentially high mortality. In order to understand the dynamical behavior of the human-to-human 
transmittable avian influenza, we develop a mathematical model by taking into account the human-to-human 
transmission of the avian influenza with the exposed compartment in both human and bird population. We show that 
by using the basic reproduction number the stability of the equilibria in the proposed model can be controlled. The 
global stability of both the disease-free and the endemic equilibrium is shown by using the Lyapunov function 
theory. Finally, numerical results are carried out to justify this work.  
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1  Introduction 

Avian influenza is one of the most dangerous 
diseases for the wellbeing of animals and humans 
nowadays. A few years back it was a disease of wild 
birds and poultry and was of a limited significance 
[1, 2], but this perspective has changed as the 
emergence of a strain can infect humans through 
bird-to-human transmission and can kill about 60 
percent of those infected [3]. But its potential to 
change into an extremely virulent human-to-human 
transmittable pandemic strain is the real danger for 
the human health. It requires drastic measure for the 
control of the spread of avian influenza to reduce 
such kind of probabilities. 

The pathogens of the avian influenza mutates at a 
very high rate and expands its host range [3]. A large 
number of wild bird species, species of mammals and 
species of domestic birds as well as humans have 
been infected by various strains of avian influenza [4, 
5, 6]. It is difficult to control the disease because of 
the multi-species conglomerate of hosts and because 
of this difficulty, the researchers directed their efforts 
to reduce the circulation within the poultry 
population, as it is the main responsible for the 
transmission of the disease. In order to control the 
spread of the disease, only culling was applied in the 
last decade [3] which caused a significant economic 
loss by destroying a large number of chickens. 
Nowadays, to control the spread, multiple control 

strategies are in attempt like increasing bio security, 
culling and vaccination of poultry. 

A pandemic among humans may cause by the 
highly pathogenic H5N1 strain, if it acquires a highly 
efficient human-to-human transmission mechanism, 
while retaining high pathogenicity. Several reports 
have so far been made of possible co-infection of 
humans with an H5N1 strain and a human strain. One 
of the co-infection reports was of an Indonesian teen 
in 2008. The other of an Egyptian man, suspected of 
the co-infection by H5N1 and the pandemic H1N1 
strain in 2009 [3]. The reports of such co-infection in 
humans alarms the threat of future pandemic.  

In this work, we combine two nonlinear models, 
the first one describes the interaction between the 
susceptible human and the infected human and 
infected birds populations, and the second one 
describes the interaction between the susceptible 
birds and the infected birds populations. We first 
establish stability results for the proposed model. 
Analysis of the model reveals that there are two 
equilibria, the disease-free and the endemic 
equilibria. Further, it is shown that the model exhibits 
the phenomenon of backward bifurcation where the 
locally asymptotically stable disease-free equilibrium 
co-exists with a locally asymptotically stable 
endemic equilibrium when the threshold quantity 

0 1R  . The local dynamics of the proposed model 

are completely determined by the basic reproduction 
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number 0R .  For 0 1R   the disease-free 

equilibrium is locally stable while for 0 1R  the 

endemic equilibrium is locally stable. By using the 
Lyapunov function theory, we present the global 
asymptotic stability. Finally numerical simulations 
are carried out to support the analytical conclusion 
and illustrate possible behavioral scenarios of the 
proposed model. 

 
2  Model frame work 
In this section we present a compartmental model 
that divides the human and birds populations into two 
different classes. We divide the total human 

population at time t denoted by ( )hN t  into five 

distinct epidemiological subclasses which are 

susceptible ( )hX t  exposed ( )hE t  infected 

( )hI t  treated ( )hT t  and recovered ( )hR t  and 

the birds population ( )bN t  into three distinct 

subclasses which are susceptible ( )bX t  exposed 

( )bE t  and infected ( )bI t  The model is 

represented by the following system of differential 
equations.  
 

( )
( ) ( ( ) ( )) ( ) ( ),

1 2

( )
( ) ( ) ( ) ( ) ( ) ( ),

1 2

( )
( ) ( ) ( ),

( )
( ) ( ) ( ), (1)

( )
( ) ( ) ( ),

( )

dX t
h X t I t I t X t R t

h h h b h h hdt

dE t
h X t I t X t I t E t

h h h b h h hdt

dI t
h E t I t

h h h h h hdt

dT t
h I t T t

h h h h hdt

dR t
h T t R t

h h h h hdt

dX t
b

  

   

   

  

 

   

   

   

  

  

ò

ò

( ) ( ),
3

( )
( ) ( ) ( ) ( ),

3

( )
( ) ( ) ( ),

X X t I t
b b b bdt

dE t
b X t I t E t

b b b b bdt

dI t
b E t I t

b b b b bdt

  

  

  

  

  

  

 
with the initial conditions 
 

(0) 0, (0) 0, (0) 0, (0) 0,
(2)

(0) 0, (0) 0, (0) 0, (0) 0.

h h h h

h b b b

X E I T

R X E I

   


   
 

The complete descriptions are given in the following 
Table 1 and the transmission dynamics are given in 
Figure 1.  
 

Table 1. 
Parameters              Description 

Λ Recruitment rate of human population 
α

1
 Effective contact rate between the susceptible 

human and infected human 
α

2
 Effective contact rate between the susceptible 

human and infected birds 
ε
h

 The rate of immunity loss 

φ
h

 Progression rate of human from exposed class to 
infected class 

h  
The treatment rate of human 

μ
h

 The natural death rate of human class 

β
h

 Disease induced death rate in humans 

Π Recruitment rate of birds population 
γ
h
 Recovery due to treatment 

β
b

 Disease induced death rate in birds 

α
3

 Effective contact rate between susceptible birds 
and the infected birds 

φ
b

 Progression rate of birds from exposed class to 
infected class 

μ
b

 The natural death rate of birds 

 

 
 
Figure 1: The flow chart represents the transmission 
dynamics of the avian-human influenza with 
horizontal transmission. 
 
The total human population dynamics is given by 
 

( )
( ) ( ). (3)h

h h h h

dN t
N t I t

dt
       
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By the given initial conditions (0) 0hN  ,  so the 

total population N (t)h  remains positive and 

bounded for all finite time t > 0. The total dynamics 
for the birds population is 
 

( )
( ) ( ). (4)b

b b b b

dN t
N t I t

dt
       

 
From equation (3) and (4), we have 
 

( )
( ),

(5)
( )

( ).

h
h h

b
b b

dN t
N t

dt

dN t
N t

dt



 


  


  


  

Then lim ( )h
t

h

SupN t



  ,

lim ( ) .b
t

b

SupN t



  Hence the feasible region for 

the system (1) is given by 
 

8
1 2

{( ( ), ( ), ( ), ( ), ( ), ( ),

( ), ( )) , , }.

h h h h h b

b b

h b

X t E t I t T t R t X t

E t I t R V V


 

 


  

  

   
3.  Disease-free equilibrium 
In order to find the dynamical features of the 
proposed model (1), we set the right hand side 
of all equations in the system (1) equal to zero. By 
the direct calculations we get the disease-free 

equilibrium point 1 ( , 0, 0, 0, 0, , 0, 0)h bE X X , 

where 
o
h

h

X



  and .o

b

b

X



  The dynamics 

of the disease is described by the threshold quantity 

3
0 .

( )( )
b

b b b b b

R
 

    


 
  

The threshold quantity 0 ,R  is known as the basic 

reproduction number of the disease and it shows the 
expected number of new infections produced by a 
single infective when introduced into a susceptible 

population. The disease dies out if 0 1,R   as it 

shows that on average each infected individual 
infects fewer than one individual. The disease will 

spread if 0 1,R   as it shows that on average each 

infected individual infects more than one individual. 
  

Theorem 3.1 For 0 1R  , the disease-free 

equilibrium poin 1E  of the system (1) is locally 

asymptotically stable if and only if 

1 2 1
o

h hM M X  .  

Proof. By linearizing the system (1) at the 

equilibrium point
 1 ( ,0,0,0,0, ,0,0)o o

h bE X X , 
 

We obtain the characteristic equation 

1 1 2 1[ ][ ][ ][ ]o
h h h bM M M X            

5 1 2 1 5 6 1 2 1[ ( )][ ( )]o o
h h h hM M M X M M M M X      

3 3 4 3[ ][ ( )] 0,o
b bM M M X          

 
where 

      

1

2

3

4

5

6

,

,

,

,

,

.

h h

h h h

b b

b b

h h

h h

M

M

M

M

M

M

 

  

 

 

 



 

  

 

 

 

 ò

  

The eight eigenvalues corresponding to the above 
characteristic equation are  

1 2 1

3 1 2 1

4 5 1 2 1

5 5 6 1 2 1

6 7 3

8 3 4 3 3 4 0

0, 0,

( ),

( ),

0, 0,

[1 ].

,

h

o
h h

o
h h

o
h h

b

o
b b

M

M M X

M M M X

M M M M X

M

M M X M M R

  

  

  

  

  

  

     

  

  

  

     

     

  

We see that all the eigenvalues will have negative 

real parts only if 1 2 1
o

h hM M X   and 0 1R  . 

Hence the disease-free equilibrium 1E  is locally 

asymptotically stable if 1 2 1
o

h hM M X    and 

0 1R  .   

 
3.1  Endemic equilibria and backward 
bifurcation 
In order to find the endemic equilibria of the 
proposed model (1), we need to take the following 
steps: 

Let 
* * * * * * * *

2 ( , , , , , , , )h h h h h b b bE X E I T R X E I  

represents any arbitrary endemic equilibrium of the 
model (1). By solving the equations of the system (1) 
at steady state, we get 
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* *

* 5 6 1 2 5 6

5 6

,h h h h h h h
h

h h

M M I M M M M I
X

M M

   

 

  


ò
  

   
* *

* *2

5

, ,h h h
h h

h

M I I
E T

M




   

*
* * 3 4

5 6 3

, ,h h h
h b

b

I M M
R X

M M

 

 
    

 
*

* 1 2 4 5 6

* *

2 5 6 1 2 5 6

1 4

2

[ ]

,

h h
b

b h h h h h h h

b

M M M M M I
E

M M I M M M M I

M



     



 


  



ò
  

*
* 1 2 5 6

* *
2 5 6 1 2 5 6

*
1

2

[ ]

.

h h
b

h h h h h h h

h

M M M M I
I

M M I M M M M I

I



    






  



ò
 

If 
* 0hI  , then by putting values in the system (1) 

at steady state, we obtain after some calculations the 
following equation:  

   2( ) 0,h h hf I aI bI c       (6)   

 
Where 

1 3 3 4 1 2 5 6

1 2 5 6 2 3 2 3 4

3 3 4 5 6 1 1 2

2 3 4 5 6

[ ],

[ ][ ]

[ ],

[1 ].

h h h h

h h h h b b

h h

h b o

a M M M M M M

b M M M M M M

M M M M M M

c M M M M R

    

       

   

  

 

  

  

  

ò

ò
  

The coefficient a  is always positive as 

1 2 5 6 h h h hM M M M    ò  and c is positive if 0R  

is less than unity and is negative if 0R  is greater 

than unity. Since 0a  , so the positive solution 

depends on b and c. For 0R >1 the above equation 

gives us two roots, one is positive and the other is 

negative. By substituting 0R =1, the equation has 

nonzero solution h

b
I

a


 ,  which is positive in 

case if and only if 0b  . For 0b   there is a 

positive solution for 0R =1 It means that equilibria 

depends upon 0R  and there exists an open interval 

which has two positive roots 

2 2

1 2

4 4
, .

2 2
h h

b b ac b b ac
I I

a a

     
 

 

If 0c   and either 2 4b ac  or 0,b   the 

above equation has no positive solution, and thus 
there are no endemic equilibria. For different range of 
these parameters the following results are established. 

 
* *
1 2 0

0

I , I versus shows a backward

bifurcation with endemic equilibria

Figure

 when 

 2.   

1.

R

R 
  

Theorem 3.2 The system (1) has 
(i) a unique endemic equilibrium in Ω if 

0 1;oc R     

(ii) a unique endemic equilibrium in Ω if b<0 and 

0c  or 2b - 4ac = 0;  

(iii) two endemic equilibria in Ω if 0c  , b<0 and 
2b - 4ac > 0 

(iv) no endemic equilibria otherwise. 
In the above theorem case (iii) indicates the 
possibility of backward bifurcation in the model (1) 

when 0 1R    

. To find the backward bifurcation, we set the 

discriminant 2b - 4ac to be zero and solved for the 

critical value of 0R , denoted by cR  is given by 

2

2 3 4 5 6

1
4 [ ]

c

h b

b
R

a M M M M  
 


.  

 

Hence, 0R < Rc  is equivalent to 2 4 0b ac   

and therefore the backward bifurcation would occur 

for values of 0R  such that 0 1cR R  . We can 

illustrate it by simulating the proposed model (1) 

with the following set of parameter values: 2,   
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π =18, 1 0.001, 
 2 0.019,  3 0.35,   

0.01,h ò  0.03,h 
 

0.05,h  0.085,h   

0.455,b   0.018,h   0.6,b   

0.2,b   and 0.01.h   The phenomenon of 

backward bifurcation is confirmed by Figure 2 as it 

clearly shows that for 0 1R   there exist two locally 

asymptotically stable equilibria. 
Theorem 3.3 The model (1) has a backward 

bifurcation at 0 1R   if and only if b<0. 

Proof: Let us consider for sufficiency the graph of 
2( ) .y g I aI bI c     Since 0c   for 

0 1R   thus g(0)=0 , hence the graph passes 

through the origin. Further g(I)=0 has a positive root 

b
I

a


   if  b<0. On increasing the value of c 

from zero to some positive value, g(I) being a 
continuous function of c guarantees that there will be 

some open interval (0, )ò  containing c, on which 

g(I) has two positive real roots. Thus we have shown 

that for 0 1R   there exist two endemic equilibria. 

The necessity is obvious as 0,b    the equation 

(6) has no positive real roots when 0 1R 
.
  

Theorem 3.4 When 0 1,R   the unique endemic 

equilibrium state 2E  is locally asymptotically 

stable for 5 6 5 2.h h h hM M Q Q    ò  

Proof: By linearizing the system (1) at 
* * * * * * * *

2 ( , , , , , , , )h h h h h b b bE X E I T R X E I , we have the 

characteristic equation 

1 1 1 5 5 5

3 6 5 6 5 2

6 3 4 6 7

[ ][ ][ ][ ]

[ ][ ( )]

[ ][ ( ] 0,

h h h h

b

Q M Q Q M Q

M Q M M Q Q

Q M M Q Q

   

    

  

    

   

   

ò   

where 

        
* *

1 1 2 ,h h bQ I I        

        
* *

2 1 2 ,h bQ I I    

        
*

3 1 ,h hQ X    

        
*

4 2 ,h hQ X    

        5 1 2 1 3 ,hQ M M Q Q   

        
*

6 3 ,b bQ I     

        
* 2 * *

7 3 6 3 .b b bQ X Q I X      

There are eight eigenvalues corresponding to the 
above equation. All the eigenvalues will be negative 

only if 5 1 2 1 3 0hQ M M Q Q    and  

5 6 5 2h h h hM M Q Q    ò .   

After simplification we see that 5Q <0   only if 

0 1R  .  Thus all the eigenvalues have negative 

real parts, which indicates that 2E  is locally 

asymptotically stable.  
 
4  Global stability analysis 
We illustrate the global property of the disease-free 
and the endemic equilibrium of the system (1) by the 
following theorems. 

  
Theorem 4.1 The disease-free equilibrium of the 
system (1) is globally asymptotically stable on Ω. 
Proof: We construct the Lyapunov function for the 
global stability of the system (1) at the disease-free 

equilibrium 1E  as follows: 

2

3

2( ) [( ( ) ) ( ) ( ) ( ) ( )]

[( ( ) ) ( ) ( )] .

o
h h h h h h

o
b b b b

F t X t X E t I t T t R t

X t X E t I t

     

   

  
By taking the time derivative, we have 

1

2
3

( ) [( ( ) ) ( ) ( ) ( ) ( )]
2

[ ( ) ( )] 2[( ) ]

[ ],

o
h h h h h h

o
h h h h b b b b

b b b b

F t X t X E t I t T t R t

I t N t X X E I

I N

 

  

       

      

  

  
Where 

N (t)=X (t)+E (t)+I (t)+T (t)+R (t),

N (t)=X (t)+E (t)+I (t)

h h h h h h

b b b b

  

 (') denotes the derivative with respect to time t. 

Using 
o
h

h

X



   and 

o
b

b

X



  ,  we have 

1

2
3

( ) [( ( ) ) ( ) ( )]
2

[ ( ( ) ) ( ) ( ( ) ( ))]

2[( ( ) ) ( ) ( )]

[ ( ( ) ) ( ) ( ( ) ( ))].

o
h h h h

o
h h h h h h h h

o
b b b b

o
b b b b b b b b

F t X t X N t X t

X t X I t N t X t

X t X E t I t

X t X I t N t X t

  

  

     

    

    

    
          

Thus ( )F t  is negative and ( ) 0F t   if and only 

if 

E (t)=I (t)=T (t)=R (t)=E (t)=I (t)=0 andh h h h b b
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( ) o
h hX t X , ( ) o

b bX t X .  Hence by Lasalle’s 

invariant principle [7], the disease-free equilibrium 

state 1E  is globally asymptotically stable on  .    

 

Theorem 4.2 The endemic equilibrium 2E  of the 

system (1) is globally asymptotically stable on Ω for 
* *

h h h hN I     and  
* *.b b b bN I      

Proof: We define the Lyapunov function for the 
endemic equilibrium as 
  

* * *

*

( ) [ ( ) ] [ ( ) ] [ ( ) ]

( ) ( ) [ ( ) ] ( ) ( ).

h h h h h h

h h b b b b

L t X t X V t V E t E

T t R t X t X E t I t

     

     

  
By calculating the time dependent derivative of the 
above function along the solutions of the system (1), 
we have 

( ) .h h b b h h b bL t I I N N              

Using  
* *

h h h hN I      and 

* *,b b b bN I      we have   

 

 

* *

* *

( ) ( ( ) ) ( ( ) )

( ( ) ) ( ( ) ),

h h h b b b

h h h b b b

L t N t N N t N

I t I I t I

 

 

     

   
  

 

where 
* * * * * *
h h h h h hN X E I T R       and 

* * * *
b b b bN X E I   .  

Thus ' ( )L t  is negative and ' ( ) 0L t   if and 

only if 
*( )h hX t X ,  

*( )h htE E , 
*( )h htI I , 

*( )h htT T , 
*( )h htR R , 

*( )b bX t X , 

*( )b btE E , 
*( )b btI I . 

 
Hence by Lasalle’s invariant principle [7], the 

endemic equilibrium state 2E  is globally 

asymptotically  stable  on   . 
 
   

5  Numerical results and discussion 
We solve the proposed model by using Runge-Kutta 
fourth order scheme. Some of the parameter values in 
the proposed model based on reality, for example the 
duration of the infectious period, natural death rate, 
disease induced death rate, etc. (see Table 2). As a 
person infected with the avian influenza virus is only 
infectious for almost seven days, the recovery rate 
should be equal to 0.143 per day and not the inverse 
of the length of the illness. The natural death rate of 

human 0.0000421h   per day, corresponding 

to the life expectancy of the human is 70 years. 1 , 

2  are the effective contact rates between hS  and 

hE  and between hS  and bI  respectively, 3  is 

the effective contact rates between bS  and bI , we 

choose these parameters arbitrarily as 1 0.0002 

, 2 0.0025   and 3 0.01  . The values used 

for numerical simulations are given in Table 2, with 

10,   0.14h   and 0.4b  , which are 

biologically feasible. Figure 3 represents the human 
population and Figure 4 represents the birds 
population. 
 

Table 2. Parameter values used for numerical 
simulations 

Notation     Values Resourse 

   2.5/day [8] 

h   0.0000421/day [9] 

b   0.00137/day [10] 

h   0.002/day [11] 

b   0.1/day [10] 

1
h
   70 years [12] 

h   0.00137/day [13] 

h   

 

0.4 [14] 

 
Figure 3. Plot shows human population 
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Figure 4.  Plot shows bird population 

 
6  Conclusion 

In this work, we discussed the 
compartmental avian influenza model. As in 
epidemiological models, our model has two steady 
states, an uninfected steady state and endemically 
infected steady state. By establishing the stability 
results we found both the disease-free and the 
endemic equilibria. We also presented that the 
proposed model exhibits the phenomenon of 

backward bifurcation, where for 0 1,R   the locally 

asymptotically stable disease-free equilibrium 
co-exists with a locally asymptotically stable 
endemic equilibrium. Then to present the global 
stability of both the disease-free and endemic states, 
we developed Lyapunov functions. We believe that 
this new analysis is biologically more plausible than 
the previous assumptions. 
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