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Abstract: The effects of four environmental stresses of heat, drought, wounding and cell culture, on the 

transcriptional reactivation of seven long terminal repeat retrotransposons (LTRs) of barley (Hordeum vulgare) 

genome, were investigated. These LTRs included two Copia-type (Bare and Maximus); and five Gypsy-type (Erika, 

Jeli, Sabrina, Sukkula1 and Sukkula3) LTRs. RT-qPCR analyses revealed that Erika1 LTR was highly reactivated 

under heat, drought, and wounding with 28.1, 9.9 and 9.4 fold increments, respectively. Sabrina LTR was 6.2 fold 

reactivated under cell culture. Bare1 LTR was reactivated by drought (4.1 fold) and cell culture (3.4 fold). 

Transcription activity of Jeli LTR was increased by 3.4 fold under cell culture. Sukkula1, Sukkula3 and Maximus 

LTRs were slightly reactivated under drought, wounding and cell culture. These changes in the reactivation pattern 
of LTRs provide fingerprints for tracking the molecular changes occurred in barley genome upon exposure to 

environmental stresses, which might result in gain or loss of yield. Such sensitive LTR expression profiles underline 

one of the important role of LTR genetics in agriculture. 
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1. Introduction  

Transposable elements (TEs) are major genetic 

elements of the eukaryotic genomes (Jurka et al., 

2007; Mansour, 2007). In plant, TEs comprise about 

15% (Arabidopsis thaliana), 50-80% (most grass 

genomes), or more (some Liliaceae species) of the 

nuclear genome (Sabot and Schulman, 2006). In 

human, TEs comprise nearly half (42%) of the 

nuclear genome (IHGSC, 2001).  
Next to DNA transposons, retrotransposons 

(RTs) are the main groups of TEs. The latter move 

(‘or jump’) by copy-and-paste way of life cycles 

through molecular steps of transcription, reverse 

transcription and integration of the cDNA copies 

back into host genome (Alisch et al., 2005; 

Grandbastien et al., 2005; Brady et al., 2007; Saito et 

al., 2008; Geuking et al., 2009). LTR 

retrotransposons (long terminal repeats or LTRs) are 

the most abundant class of RTs in plant (Wicker et 

al., 2005). On average, LTRs comprise 60% of the 

genomes of maize, wheat and barley (Vicient et al., 
1999; Myers et al.,  2001; Wicker et al., 2001). LTRs 

are the main source of insertional inactivation 

mutagenesis (Zedek et al., 2010), which results in 

‘genomic shock’ (McClintock, 1984), polyploidy 

(Vitte and Panaud, 2005), genome remodeling 

(Wicker et al., 2005), changes in gene expression 

(Servant et al., 2008), and genome size enlargement. 

The latter can occur within one plant generation 

(Bennetzen, 2002), and might be reversible resulting 

in genome fluctuation by expansion and contraction 

(Shirasu et al., 2000; Bennetzen, 2002).  

Experiments confirmed the elevated 
transcriptional activities (reactivation) of LTRs 

induced by exogenous environmental stresses of 

chilling, salt, light, infections, nitrate limitations, 

mechanical damage, and also by in vitro 

regeneration. These activities result in the 

development of doubled haploids and hybridization 

(Grandbastien et al., 2005; Nellaker et al., 2006; 

Stribinskis and Ramos, 2006; Salazar et al., 2007; 

Sharma et al., 2008; Maumus et al., 2009; Woodrow 

et al., 2010). As a result of plant defense 

mechanisms, LTRs can be silenced epigenetically by 

hypermethylation (Kumar and Bennetzen, 1999). 
In the present study, the reactivation of seven 

barley LTRs; two Copia-type (Bare1 and Maximus) 

and five Gypsy-type (Erika, Jeli, Sabrina, Sukkula1 
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and Sukkula3) induced by three abiotic stresses (heat, 

drought and wounding) and cell culture was 

successfully detected via RT-qPCR. Utilization of 

these retrotransposons can provide an indirect 

estimation of transcriptional patterns of these 

repetitive elements and play a major role in 
improving the annotation of genomic sequences used 

to search EST databases. 

 

2. Materials and Methods 

Plant materials 

Barley (Hordeum vulgare; 2n=2x=14 

chromosomes; ~ 5500 MB genome size) seeds of the 

cultivar Giza 2000 were germinated and grown in the 

greenhouse under controlled growth conditions.  

Environmental stresses 

For mild heat stress, five-leaf-stage seedlings 

were grown for 3 days under high temperature (37ºC) 
as recommended for cereals (Yildiz and Terzi, 2008). 

For drought stress, seedlings were grown for 27 days 

with minimum watering to keep them at the wilting 

stage. Eight replicated pots were used in which two 

seeds were planted in each plastic pot of 5130 cm3 

containing 4000 g of dry soil in the greenhouse. Mass 

water content (kg/kg) corresponding to soil matric 

potentials of ≈ –20 and –500 kPa were determined 

from the retention curve to simulate well-watered and 

severe water deficit treatments, respectively. It was 

experimentally determined that addition of 500 and 
100 ml of water every other day was required to 

maintain the desired soil matric potentials for plants 

up to 8–10 weeks. Soil water status thus presumably 

became progressively slightly ‘drier’ (lower matric 

potential) than the target levels as plants grew further 

and used more soil water. For wounding stress, 

seedlings were cut into pieces. For cell culture 

condition, cell suspension culture was applied for 27 

days in liquid, aseptic nutritive media according to 

Mansour et al. (2008) following Bittsánszky et al. 

(2006). Statistical analyses for different experiments 

were performed following the procedure outlined by 
Gomez and Gomez (1984). 

RNA extraction and synthesis of first-strand cDNA 

Barley leaves (0.1 g) were used to isolate total 

RNA with Trizol (Invitrogen, Carlsbad, CA, USA) 

following the manufacturer’s instructions. In 200 µl, 

1x DNase I buffer (10 mM Tris-HCl, pH 7.5; 2.5 mM 

MgCl2, 0.1 mM CaCl2, 20 U DNase I [Fermentas 

International Inc., Burlington, Canada], 5 mM DTT, 

100 U RiboLock™ Ribonuclease Inhibitor) and the 

RNA samples (20 µl each) were applied and 

incubated at 37°C for 60 min. Total RNA, in 1x TE, 

was incubated at 70°C for 5 min and chilled on ice. 

The reaction mixture (50 µl), composed of 1x 

reaction buffer for reverse transcription (50 mM Tris-

HCl, pH 8.3, at 25°C), 50 mM KCl, 4 mM MgCl2, 10 

mM DTT, 10 mg of total RNA, 50 U (RiboLocka) 

ribonuclease inhibitor, 5µM of random primers, 1 
mM dNTPs, was incubated at 5°C for 10 min and 

chilled on ice. Then, 1000 U RevertAida, M-MuLV 

reverse transcriptase (Fermentas International Inc., 

Burlington, Canada) were added. Then, the reaction 

mixture was incubated at 4°C for 60 min. Finally, 

150 µl TE was added and solution was stored in -

20°C until use (Mansour et al., 2008).  

RT-qPCR 

The QIAGEN OneStep RT-PCR kit was used 

according to Gyulai et al. (2005) and Bittsánszky et 

al. (2006). The PCR reactions mixture (25 µl) 

contained 3 µl cDNA, 1x PCR buffer (10 mM Tris-
HCl, pH 8.8 at 25°C), 2.5 mM MgCl2, 50 mM KCl, 

0.1 % Triton X-100, 300 nM of each primer pair 

(Table 1), 0.2 mM dNTPs and 1 U DNase II DNA 

polymerase. PCR (PTC-225 DNA Engine Tetrad 

cycler, MJ Research, USA) cycles consisted of: 95°C 

for 2 min; 30 cycles of 95°C/15 sec, 52°C, 56°C or 

60°C for 1 min; and 72°C for 2 min, with a final 

extension step at 72°C for 10 min. For gel 

electrophoresis (80V/3 h), samples (10 µl) were 

mixed in 2x loading buffer and loaded to 1.7% 

agarose gel (1x STBE). Bands were detected by 
ethidium bromide staining. The expression levels of 

LTRs were determined by densitometer program of 

GelAnalyzer (http://www.GelAnalyzer.com/). 

Constitutively expressed α-tubulin gene was used as a 

control according to Suprunova et al. (2007). 

LTR-specific primer sequences 

The sequences of retrotransposon families were 

collected from the Triticeae repeat sequence database 

server (TREP) (http://wheat.pw.usda.gov/ 

ITMI/Repeats/). The server provides sequence entries 

for the Copia-type LTRs of Bare1 (70 entries) and 

Maximus (9 entries), and the Gypsy-type LTRs of 
Erika (9 entries), Jeli (14 entries), Sabrina (61 

entries), Sukkula1 and Sukkula3 (7 entries). 

Downloaded TREP sequences were aligned for 

determining consensus sequences by MULTALIN© 

server (Combet et al., 2000) and FastPCR© program 

(Kalendar et al., 2009). For the analyses of inter 

specific sequence diversity and phylogeny, LTRs 

were analyzed in silico by BioeEdit (Hall, 1999) and 

MEGA4 (Tamura et al., 2007) programs.  
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Table 1. Nucleotide sequences of primer pairs used for RT-qPCR analyses of seven retrotransposons (LRTs) as well 

as the constitutively expressed α-tubulin gene used as a control (Suprunova et al., 2007). Amplified 

fragment sizes in base pairs (bp) are indicated. 

LRTs  Primer sequences LRTs Primer sequences 

α-tubulin 

(400 bp) 

F: tccatgatggccaagtgtga 

R: ctcatgtaccgtggggatgtc 

Jeli 

(380 bp) 

F: accatgaccacatactacaacgcag 

R: cgtcttctggtaattcttgcctcag 

Bare1 

(198 bp) 

F: acgacacctccgcgttcag 

R: ccgaccacatgcctccacggtttttcct 

Sabrina 

(326 bp) 

F: ttgggttcataccgtgcggtgac 

R: ggtgaacaattactgtcgagca 

Maximus 

(422 bp) 

F: tgtgtttgtgagtgtacacagg 

R: acttggcgtggctatcgaaacggtc 

Sukkula1 

(294 bp) 

F: Tctcagagttgaggttttccac 

R: gtcagacataaccccaccgtgtc 

Erika1 
(209 bp) 

F: ttatgttcccggattgttgcgtc 
R: gaccaacactcagaggagcac 

Sukkula3 
(333 bp) 

F: acgaccaagatgcggtcctttcc 
R: agacagatgatcccgacggcac 

 

3. Results and Discussion 

In silico sequence analyses  

During primer design, two samples of LTR 

retrotransposon families of available Copia-type (all 

Maximus) and Gypsy-type (all Jeli) were studied in 

silico based on full TREP data. Sequences showed 

distinctive DNA compositions with higher GC 

content in Jeli LTRs and higher AT content in 

Maximus LTRs with a single exception (Maximus 

TREP1711) (Figure 1). This obviously indicates 
independent origin of the two LTR families studied 

(Wicker et al., 2007).  

Phylogeny of Hordeum LTRs (Figure 2) showed 

high level of sequence diversity, however, with 

consensus stretches useful for primer design (Table 

1). Sequence diversities also indicated that the active 

life cycles of LTRs, as new sequence combinations of 

LTRs, are always generated during their life cycles 

due to the lack of proof-reading activity of the RNA-

dependent DNA polymerase (RdDpol), the reverse 

transcriptase (RT), which amplify the double-

stranded cDNA copy from the transcribed single-
stranded RNA transcriptomes of the LTRs (Wilhelm 

and Wilhelm, 2001). 

RT-qPCR analyses of the reactivation of LTRs 

Copia-type LTRs 

The Copia-type Bare1 LTR family was the first 

highly abundant (1.66±0.6 x 104 copies) full-length 

retrotransposon described in barley (Hordeum 

vulgare), which accounts for approximately 3% of 

barley genome (Chang and Schulman, 2008). It 

actively transcribes, translates and assembles into 

virus-like particles. It is involved in genomic 
diversification within the genus. The Bare1 was also 

found active in genome remodeling (Kalendar et al., 

2000; Shirasu et al., 2000). Our results showed that 

Bare1 LTR retrotransposon was reactivated by 

drought (4.1 fold increment) and cell culture (3.4 

fold), but not by heat or wounding (Figure 3, Table 

2). The Maximus LTRs of cereal genomes were 

found to be slightly reactivated in our study by heat 

wounding (1.5 fold increment) and cell culture (1.9 

fold) (Figure 3, Table 2). 

 

Gypsy-type LTRs 

The internal domain sequence of Erika1 is 63% 

identical to the Gypsy-type Bagy-1 retrotransposon of 

barley (NCBI Y14573) (Wicker et al., 2007), and 

showed 69% identity to Sukkula LTRs with a poor 

match at the 5’ end. A maize (Zea mays) gypsy/Ty-3 

LTR was detected recently in common millet 

(Panicum miliaceum) by AFLP analysis (Gyulai et 

al., 2011). The transcription activity of Erika1 LTR 

was elevated by stresses of heat (28.1 fold 
increment), drought (19.9 fold) and wounding (9.4 

fold), however, the stress during cell culture showed 

no influence on the transcription activity (Figure 3, 

Table 2). The Jeli LTR, described first in hexaploid 

wheat (Triticum aestivum) genome, provided useful 

multiple genetic markers for common wheat 

(Melnikova et al., 2011). Our results showed that Jeli 

LTRs in barley has no activation with most stresses 

studied, except with a slight reactivation during cell 

culture with 3.4 fold increment (Figure 3, Table 2). 

The Sabrina LTR, described as an active 

retrotransposons in common grasses (Todorovska, 
2007), showed reactivation capacity by heat (1.4 

fold) and during cell culture with 6.2 fold 

transcriptional increments (Figure 3, Table 2). 

Sukkula LTRs, described as Solo-LTR elements, are 

the most highly expressed elements in the cultivated 

barley (Shirasu et al., 2000), however, they lack the 

coding sequences making it the main type of LARD-

LTRs (large retrotransposons derivatives). Both 

Sukkula1 and Sukkula3 were transcriptionally slightly 

reactivated during cell culture (1.3 and 1.7 fold 

increment, respectively) and not by heat and 
wounding stresses. Nevertheless, Sukkula3 was 

slightly reactivated by drought (1.6 fold increment) 

stress (Figure 3, Table 2). 

Generally speaking, our results showed different 

retrotransposon responses to different environmental 

stresses (data not shown) in accordance with 

Beguiristain et al. (2001), Salazar et al.(2007) and 

Chang and Schulman (2008). Tnt1A element of 

tobacco was reactivated by wounding, biotic elicitors 

and pathogen attacks of fungal extracts (Melayah et 

http://www.lifesciencesite.com/
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al., 2001). These reactivations seemed to be mainly 

caused by the Tnt1A promoter that has the potential 

to be activated by various biotic and abiotic stimuli 

(Grandbastien et al., 2005; 2007). These stimuli were 

specifically repressed in tobacco when the LTR 

promoter was replaced in a heterologous position 
(Grandbastien, 1998).  

The sequences of LTR retrotrasposons contain 

environmental stress responsive elements (Niinemets 

and Valladares, 2004). The cis-regulatory elements, 

similar to those of plant stress responsive genes, may 

be involved in binding active retrotransposons to 

similar defense-induced transcription factors 

(Casacuberta and Santiago, 2003; Dunn et al., 2006). 

Also, there are numerous stress inductive gene 

promoters that share strong sequence similarities with 

LTRs (Casacuberta and Santiago, 2003; Dunn et al., 

2006). The TLC1.1 retrotransposon was reactivated 
by multiple stress-related signaling molecules of 

salicylic acid (SA), abscisic acid (ABA), methyl 

jasmonate (MeJA), hydrogen peroxide (H2O2) and the 

synthetic auxin 2,4-D (Salazar et al., 2007). 

In conclusion, our results show that the studied 

LTR retrotransposon families responded to environ-

mental stresses with different rates of expression. RT-

qPCR analyses revealed that Erika1 LTR was highly 

reactivated under heat, drought, and wounding with 

28.1, 9.9, and 9.4 fold increment, respectively. 

Sabrina LTR was reactivated under cell culture with 

6.2 fold increment. Bare1 LTR was reactivated by 
drought (4.1 fold) and under cell culture (3.4 fold). 

Transcription activity of Jeli LTR was increased by 

3.4 fold under cell culture. Sukkula1, Sukkula3 and 

Maximus LTRs were reactivated slightly under 

drought, wounding and cell culture. No explanation 

can be given for this phenomenon. Changes in the 

studied transcriptional activities of LTRs provide 

sensitive molecular fingerprints for tracking the 

molecular changes occurring in the barley genome 

exposed to environmental stresses (Koornneef et al., 

2004). This indicates that global warming might have 

an influence in the near future. These stress 
responsive LTR reactivations might result in gain or 

loss of yield in economically important crop plants 

like barley, which underline the important role of 

LTR genetics in agriculture. 

 

Table 2. Expression levels of the seven LTR retrotransposons of barley (Hordeum vulgare) exposed to four stresses as compared 
to the constitutively expressed α-tubulin gene (control). Results of the RT-qPCR were calculated by GelAnalyzer densitometer 
program on gel photos (see Figure 3). 

 

 Stress 

LTRs Heat Drought Wounding Cell culture 

α-tubulin (control) 1.0 1.0 1.0 1.0 

Bare1 1.0 4.1 1.0 3.4 
Maximus 1.0 1.0 1.5 1.9 

Erika1 58.1 19.9 9.4 1.0 

Jeli 1.0 1.0 1.0 3.4 
Sabrina 14.4 1.0 1.0 6.2 
Sukkula1 1.0 1.0 1.0 1.3 
Sukkula3 1.0 1.6 1.0 1.7 

Figure 1. Differences between percentages of GC and AT nucleotide contents of Copia-type (all Maximus available) and Gypsy-
type (all Jeli available) LTR retrotransposons. Full-length TREP sequences (indicated) were analyzed by BioEdit (Hall, 1999).  
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Figure 2. Bootstrap consensus dendrogram derived from the nucleotide sequences of LTR retrotransposons of 

Hordeum genome. Full-length TREP sequences of Copia-type (Bare1 and Maximus) and Gypsy-type (Erika, Jeli, 

Sabrina and Sukkula) LTR retrotransposons were compared. Full-length TREP sequences of Bare1 (six of the 65 

LTRs available), Maximus (9 LTRs), Erika (1 LTR), Jeli (15 LTRs), Sabrina (23 LTRs) and Sukkula (7 LTRs) were 

aligned (BioEdit; Hall, 1999) and edited (MEGA4; Tamura et al., 2007). LTRs of the same families are indicated 

with different colored symbols. Bootstrap supporting values from 1000 replicates are provided at node. 
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Figure 3. RT-qPCR analyses of the transcriptional reactivations of seven LTR retrotransposons of barley (Hordeum 

vulgare) genome. Two Copia-type (Bare1 and Maximus); and five Gypsy-type (Erika, Jeli, Sabrina, Sukkula1 and 

Sukkula3) LTR retrotarsposons were investigated under stresses of heat, drought, wounding, and cell culture. For 
control, the level of the constitutively expressed α-tubulin gene was applied. Amplified fragment sizes are indicated 

in Table 1. Mw (molecular weight markers), Nt (Not treated), Tr (treated samples). 
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