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Abstract : in 1991, A. D. Gunawardena et al. proposed the modified Gauss-Seidel (MGS) method for solving

the linear system with the preconditioned = I + S. The preconditioning Effect is not observed on the nth row.
In the present paper, we suggest a new precondition. We get the convergence and comparison theorems for the

proposed method. Numerical examples also given.
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1- Introduction:
We consider the following preconditioned linear

system.

PAX = Pb,
(1.1)

where A = (ai,j), ernxn is a known non singular

M-matrix, P € R™*", called the preconditioned, is
non singular, b € R(A) is known and X € R™? is
unknown, (A) is the range of A. throughout this
paper, without loss of generality, we always
assume that the coefficient matrix A has a splitting
of the foorm A = I - L - U, where is the identity
matrix, -L and -U are strictly lower triangular and
strictly upper triangular parts of A, respectively.

To effectively solve the preconditioned linear
system (1.1), a variety of preconditioners have
been proposed by several authors, see [1 — 6] and
the references there in. Since some preconditioned
are constructed only from a part of upper triangular
part of A, the preconditioning effect is not observed
on the last row of matrix A. For example, the
preconditioned P, =1+ S presented in [1] and
P,

Smax

= [ + S;qy in [7] are formed respectively by

—a;;.41=12,...,n—1;
S — ) = { 1,i+1 & ’ ] ’
(SLJ) o, Other wise
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and

—ai,ki, i = 1,...,n— 1,] > l,

= m) —
Smax = (SLJ { o, Other wise,

. max .
K; = min{j| j |ai,j|,l <n}
Motivated by their results, in this paper, we
propose the following preconditioned:

Py=1+S+Ra
(1.2)

where

_(tnky i=n j=K,
(Rmax)ij = {0, Other Wise

With
1,..,n—1}

Ky, = min{jl|a, ;| = max{|a,|,1 =

For the preconditioned (1.2), the preconditioned
matrix

Ap=U+S+ R, 5)A
Can be split as

Ap =My — Ny,
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=(I-D-L—E+Rpg—D
(U -S +SU),

—E)-

where D and E are respectively the diagonal,
strictly lower triangular parts of SL, while D and E
are the diagonal, strictly lower triangular, the MGS
iterative matrix is T, = M;' Nyy.

2. Preliminaries

For the convenience of the readers, we first give
some of the notations, definitions and lemmas
which will be used in what follows.

For A= (a;;),B=(b;;) € R™>™, we write
A = B if ai’j = bi,j holds for all l,] =
1,2,..,n. A= 0, called nonnegative, if a;=0

for all i,j =1,2,..,n, where O is a n Xn zero
matrix. For the vectors a,b € R™',a >b and
a = o can be defined in the similar manner.

Definition 2.1([9]). A matrix A is a L-matrix if

a;;>0i=1,..,nand aq;; <0 for all i,j=
1,0 L] ]

1,..,n.i #j. A nonsingular L-matrix A is a
nonsingular M-matrix if A~ > 0.

Lemma 2.1 ([10]). Let A be a nonnegative
nonzero matrix. Then

(a)p(A), the spectral radius of A, is an eigen value;

(b)A has a nonnegative eigenvector corresponding
to p(A);

(c) p(A) is a simple eigen value of A;
(d) p(A) increases when any entry of A increases.

Definition 2.2. Let A be a real matrix. Then,
A=M—N is called a splitting of A if M is a
nonsingular matrix. The splitting is called

(a)regular if M~1 = 0 and N = 0[10];
(b)weak regular if M~ > 0 and M~1N = 0[11];
(c)nonnegative if M~1N > 0[12].

(d)M-splitting if M is a nonsingular M-,matrix and
N = 0[13].
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Definition 2.3 ([8)]We call A=M—N the
Gauss-Seidel splitting of A, if M= —1L) is
nonsingular and N = V. In addition, the splitting is
called

(a)Gauss-Seidel convergent if p(M™1N) < 1;

(b)Gauss-Seidel regular if M~ = —L)"1 >0
and N =U = 0.

Lemma2.2([14)]Let A=M—-N Be an M-
Splitting Of A. Then p(M~IN) < lifand if Aisa
nonsingular M-matrix.

LemmaZ2.3([15]).Let A and B be n X n matrices.
Then AB and BA have the same eigenvalues,
counting multiplicity.

LemmaZ2.4([16)].Let A be a nonsingular M-
matrix, and let A =M, — N, = M, — N, be two
convergent splitting, the first one weak regular and
the second one regular. If M;' = M1, then
p(M{'Ny < p(M3'N,) < 1.

3. Convergence And Comparison Theorems
We begin this section with a lemma given in [7].

For the preconditioned Ps=1+S, the
Preconditioned Matrix Ag = (I +S)A can be
written as

Ag=Mg—Ng=(l-D—-L—E)—({U—-S+
SU)

In which D and E are defined as in sectionl. If
A;i+1041; # 1 =1,2,...,n — 1), then the MGS
iterative matrix Ty for A can be defined by
T,=M;'Ng=(—D—L—E)'(U—S +SU)as
(I =D —L—E)™! exists. In this case there is the
following result:

Lemma3.1([7]). Let A=I-L—-U be a
nonsingular ~M-matrix. Assume that O <
;1410141 < 1,1 <i<n-—1, then Ag = Mg — N;
is regular and Gauss-Seidel convergent.

Theorem 3.2. Let A be a nonsingular M-matrix.
Assume that 0 <a;;410;4,; <1,1<i<n-1
and O < Qe Qe <1, kj =1,..,n—1, then
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Ap =My — Ny
convergent splitting.

regular and  Gauss-Seidel

Proof. We observe that when 0 < a;;410;41; <
1,1<i<n—-1 and O< e Ak jin < Lk =
1,..,n—1, the diagonal elements of A,, are
positive and M;;! exists. It is known that (see [11])
an L-matrix A is a non singular M-matrix if and
only if there exists a positive vector y such that
> 0. By taking such, the fact that [ + S + R4, =
0 implies Apy = I+ S+ Rpg)A, >0.
Consequently, the L-matrix 4,, is a nonsingular M-
matrix, which means 4;,} > 0.

We note that L—R,, +E+E >0 since
L >R, = 0.

When 0< ai’i+1ai+1’i < 1,1 <i<n-—-1 and
0< Qe Qejm < Lki=1.,n—1 we have

D+ D < I,sothat (I —D — D) > 0. Hence,
Mzt =[(I=D=D)— (L —Rpax + E +E)]

=[I=U-=D=D)""(L—Rpax +E +
D (1-p-D)"

=[I+U-D—=D)'(L—Rpax +E+E) +
[(I=D—=D) (L= Rygr +E + E)J2 + -

+[(I =D = D) (L = Rpax + E + £)" (U -
D-D)1

=0

On the other hand, it is to see that N, =U — S +
SU>0 since U>=S and SU = 0. Therefore,
An =M, —N,, is a regular and Gauss-Seidel
convergent splitting by definition 2.3
lemma2.2.

and

For the splitting A =1—L —U of matrix A, the
iteration matrix of the classical Gauss-Seidel
method for A is T = (I — L)~*U. Comparing p(T)
with p(T,,), the spectral radius of the MGS with
the preconditionedP,, = + S + R4, We have
the following comparison theorem:

Theorem 3.3. Let A be a nonsingular M-matrix.
Then under the assumptions of theorem3.2, we
have p(T,,,) < p(T) < 1.
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Proof.ForM,, =1 —D—L—E+R,, —D—E
and N, = U — S + SU, by theorem 3.2, we know
that A,, = P,A=M,,—N,, is a Gauss-Seidel
convergent splitting. Since A is a nonsingular, the
classic Gauss-Seidel splitting A = (I —L) — U of
A is clearly regular and convergent.

To compare p(T,,) with p(T), we consider the
following splitting of A:

A=U+S+Ryg) My, — (I +S + Ry ) Ny,

If we take M;=(+S+Ru) *Myand
Ny =U+S+Rpg) Ny, then p(M7IN)) <1
since M{1N,, = M{N;,.

Also note that

Mi*=(I-D—-L—E+Rpu—D—-E)'U+
S+Rmax)

>(U-D—-L—E+Rpy—D—-E)1

=[U=U-D=D)""L—Rpax +E+E)]"( -
D-D)1

>[I —U-=D =D)L —Rpax +E+E)]*
> =L)"Y,

It follows from lemma 2.4 that p(M{IN,) <
p(M™IN) < 1.

Hencep(M;;IN,,) < p(M™IN) < 1,i.e.,p(T,) <
p(T) < 1.

Next, we give a comparison theorem between the
MGS methods with the preconditioners P, and P;
respectively.

Theorem 3.4. Let A be a nonsingular M-matrix.
Then under the assumptions of theorem 3.2 and
A, J < Q,nayj,1<n—1, we havep(Ty,) <
p(Ts) < 1.

Proof. For the matrices M,,M,,,,Ng and N,, in the
splitting of matrices A= M, — N; and P,A =
M, — N,,,, they can be expressed in the partitioned
forms as follows:

_ _(M] 0
MS—I—D—L—E—FHUT L

My, =1-D—-L—E+Ry, —D-E,
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where

M = (), iy ; =
01<i<j<n-1
1=041841,0 =,

Qij— Qi) <ESn—1,

UT = (a‘l’l,l’ ey an,n_1),

vl =V, ...
j<n-1),

an—l)l‘/j = an,j - an,knakn,j(l S

Vo=1- A knAkn,n

W = (Wll ) Wn_l)T, VVL =
—Qip + A1 (1S TS0 —1),

and N>0 is an (n — 1) x (n — 1) strictly upper
triangular matrix.

Direct computation yields

a_ (Mt |o
MSl_(UTM—l 1)

_( u | 0)
m = _Vn—1VTM—1 |Vn—1 .

and

Therefore,

NM‘1=(71—‘ﬂ)20
0] o0

sTTs

and

N,M;! =

ms'm

U,;lw) >0
)2

o
0
where T, = NM~' — Wu"M~' and T,,
WV WWTMt.

= NF -

Obviously, p(N;M;*) = p(Ty) and p(NnMy') =
p(Ty).

By simple computation, we know T,, < T, that

J < akn,nan,jrl sj=s

n — 1. Hence by lemma 2.1, we have

under the assumption ay,

PNy M) = p(T) < p(Ty) = p(N; M)
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Therefore, by lemma 2.3, we immediately know
that which means that p(T,,) < p(T,).

4. Numerical Examples

In this part, we give some examples to illustrate the
theory in section3.

Example 4.1.Let us consider the matrix A of
(1.1), given by

1 -0.2 —-0.3 —-0.1 —-0.2

A= -01 1 -01 -03 -0.1

-0.2 -0.1 1 -0.1 -0.2
-0.2 -0.1 -0.1 1 -0.3
-0.1 -0.2 -0.2 -0.1 1
We have p(T,,) = 0.3114 and p(T,) = 0.3384.

Clearly, p(T,,,) < p(T,) holds.

Example 4.2. Let the coefficient matrix A of (1.1)
be given by

1 —05 —0.5
A= (—0.3 1 -06 )
03 —03 1

We have p(T,,,) = 0.29167 < p(T,) = 0.44763
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