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Developing a Forecasting Model for Asphalt Rutting Potential Using Gyratory Compactor Parameters
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ABSTRACT: Rutting is one of the most important deteriorations in flexible pavements which a significant amount of maintenance
and rehabilitation funds are consumed for repairing it annually. On the other hand lack of a simple test to determine specimen
resistance to permanent deformation as the main reason for asphalt rutting is sensible in Superpave first level mix design which owes
considerable advantages in comparison with the marshall method. Prevalent methods of evaluating rutting potential of asphalt
mixtures are usually expensive and time consuming. Mentioned parameters illustrates the necessity of developing a simple method,
not only having fine precision but also be able to predict specimens rutting performance in the short term in laboratory. In this
research two types of aggregates (silica and calcareous base), two types of gradation, two types of bitumen, two types of filler and
three bitumen contents were used to prepare specimens. After modeling gyratory shear stress, the model and gyratory compaction
slope parameters were used to develop two mathematical models to estimate specimen wheel Track apparatus rut depth. These
models were validated using ANN and GA and make it possible to evaluate rutting potential while preparing specimens in laboratory
to determine optimum bitumen content. Hence not only expensive instruments for rutting test aren’t necessary but a considerable
reduction in mix design procedure time is gained.
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1. Introduction

A rut is a surface depression in the wheel path due to cumulative
permanent deformations which can lead to pavement drainage
capacity reduction, hydroplaning, raise in deterioration rate due to
moisture and increase in fatigue cracking of flexible pavements as
a result of thickness reduction in rutted location [1]. Rutting could
be a result of mixture volume reduction (pavement consolidation
due to traffic (figure 1)), asphalt permanent deformation in a
constant volume (plastic deformations as a result of shear stresses
in asphalt mixtures (figure 2)) or a combination of these reasons
[2]. Among different layers exposed to rutting, asphalt layer owes
high share, hence noticing permanent deformations of asphalt
mixtures because of low shear stress is an important issue in
presenting the appropriate mix design procedure [3].

Different researches used various methods to evaluate asphalt
mixtures rutting potential. Dynamic creep test is used widely in
Finland, Sweden and Australia while LCPC wheel trucker is used
more in Austria, France, Hungary, Romania and Switzerland.
Hamburg Wheel Tracking Device and Georgia Loaded Wheel
Tester are used for rutting performance evaluation in many
countries in the world. Wheel Trucker applies wheel cyclic load to
the specimen and the rut depth is recorded after 8000 cycles in a
specific temperature. It is proofed that rut depth is related to
specimen shear strength inversely. Although it is a simple test, but
it is time consuming and the instrument used for loading is
expensive. So developing a method to determine asphalt mixture
shear strength in less time with cheaper equipments seems
necessary.

2. Problem Definition

2.1. Research Targets

Asphalt mixtures low quality plays an important role in mixture
rutting. Aggregates rotational or transitive movement in asphalt
mixture due to insufficient compaction leads to permanent

deformation occurrence along shear plates [4]. So compaction as
the most effective parameter in aggregates structure and
positioning in mixture has an important effect on mixture
resistance to permanent deformation and rutting [5]. According to
previous researches, a disadvantage of Marshall method is
compacting procedure which doesn’t simulate real condition fine
[6]. Gyratory Compacting Machine, the result of 40 years
researches in rotational compacting system were used by SHRP' in
SUPERPAVE? mix design procedure. This design method has
three levels which are categorized based on traffic and load. First
SUPERPAVE level (AASHTO MP2, PP28) is for traffic with less
than 1000000 ESAL® including volumetric analysis and simple
tests [7]. This level which is noteworthy level for engineers
because of being simple and economical consideration doesn’t
include asphalt performance tests. To complete first level design in
these method simple tests should be used to evaluate asphalt
mixture workability such as rutting resistance [8].

In this paper it is tried to develop predicting models of rutting
performance by preparing specimens with a wide range of
aggregate types and gradations, bitumen types and contents and
filler types and testing them by wheel trucker, so the mixture
rutting performance can be predicted during mixture preparation
before production without consuming considerable time and cost.
2.2. Literature Review

Lack of a test with mentioned properties to predict asphalt
mixtures rutting strength in 1% level caused validated research
centers such as NCHRP* and FHWA® and FAA® to start a spread
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researches in this field [9-11]. Other studies with this target and
using SGC output data will be mentioned in this section:

2.2.1. Studies on Compaction Slope in SGC’

The first idea of using compaction slope was developed for the
first time in 2000 [12]. Later studies showed compaction slope is
an index of aggregates internal friction [13]. So this parameter
can’t be used singly to predict asphalt shear strength performance.
2.2.2. Studies Considered a Specific Part of Compaction Slope
Researches define various indexes for asphalt rutting resistance
with studying volumetric mass against gyration curve. One of
these parameters was TDI® which is assumed as compaction curve
integral from 4% to 2% voids. DEI’ was defined as 8% to 4%
voids in mentioned curve and CEI'® as compaction start to 8%
voids integral. Models based on these indexes were affected by
aggregates positioning in molds greatly and wide tests showed this
models aren’t reliable [14-15].

2.2.3. Studies on Shear Parameters During Compaction

Gyratory Maximum shear strength, gyration corresponding with
maximum shear and gyratory shear slope were defined using
gyratory shear stress curve. Studies in Florida and Michigan
University showed although there is a relation between these
parameter with APA'! rut depth, but developed models have no
convenience correlation coefficient and aren’t applicable in
practically [16].

2.3. Research Assumptions

Asphalt rutting is cumulative deformation due to base and subbase
layers consolidation, abrasion and permanent deformation in
asphalt layer. The main reason of rutting is asphalt permanent
deformation [17]. This parameter was studied in this research
under 50°C temperature. Various materials, gradation, bitumen
and filler were used in this study to increase applicability of
research results.

3. Methodology

3.1. Materials Selection and Related Tests

Rudehen Asbcheran mine (east of Tehran) and Rivand mine
(Sabzevar) were used for limestone aggregates and silica
aggregates source respectively. Minimum Percentage of Fracture,
Maximum Abrasion, Maximum Water Absorption, Minimum
Adhesion in Bitumen-Aggregate System, Minimum Sand
Equivalent and Minimum Sulfate Soundness Value tests results
were in the standard range. Saveh mine rock powder and Qom
limestone powder passed from 0.075mm sieve were used as two
filler types in specimen preparation procedure. PI and Hydrometry
test results located in standard range either. Bitumen was supplied
from Pasargad Oil Company in tow types of 60-70 and 85-100.
Penetration, Saybolt Forol Viscosity, Softening Point, Ignition
Point, Specific Gravity, Weight Loss and Ductility performed for
both types and results passed Code234 (Iranian Pavement Code
[18]) requirements.

3.2. Optimum Bitumen Content Determination

3.2.1. Gradation

Middle range of number 4 and 5 continuous gradations were used
according to table 1 [18].

3.2.2. OBC Determination and Specimen Naming

Since various types of gradation, filler, bitumen and aggregates,
288 specimens were prepared for OBC using marshal method and
finally 16 bitumen contents were determined as table 2.
Combination of two letters and two numbers was used for
specimen naming. From left to right, first character shows
aggregate type (S for silica base aggregate and A for limestone
base aggregate), second character is a number shows gradation

7 Superpave Gyratory Compactor
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number (4 for gradation number 4 and 5 for gradation number 5),
third character is the filler type (P for rock powder and A for
limestone powder) and the forth character is the bitumen type (6
for 60-70 bitumen and 8 for 85-100 bitumen).

3.3. Preparing Specimens for Tests

3.3.1. Choosing Gyration Number

Gyratory Compaction Machine was used for compacting
specimens. 8, 95 and 150 gyrations were chosen for Ny, N, and
Nimax respectively according to table 3 for ESAL equal to 10°.
3.3.2. Determining Number of Specimens for Research

To perform rutting test, due to various parameters, 144 specimens
were prepared totally with OBC, 0.5% less and 0.5% more
bitumen content with SGC. To validate test results 3 specimens
were made for each similar condition.

3.4. Gyratory Parameters

3.4.1. Shear Stress Modeling Parameters

Shear stress versus gyration number is one of the output curves of
gyratory compactor. To gain more parameters from gyratory
output curves and since it is proofed shear stress is related to
rutting inversely, gyratory shear stress were modeled versus
gyration number as independent parameter. Following logarithmic
model seemed to be the best models after testing all models:
Gs=KI1 Ln(N) + K, (@)

In which Gs is gyratory shear stress in a defined N.

Graphs such as figure 3 were drawn for all 144 specimens and the
result of modeling is shown in table 4. As it is clear in this table
more than 96.5% of models have more than 75% correlation
coefticient.

Maximum shear (S,) is the other variable which can be
determined by the presented model except K; and K,

3.4.2. Compaction Slope Parameter

One of the parameters measured by gyratory in each cycle is
specimen height. Since specimen height is distinguish in each
cycle and constant specimen weight and specimen cross section,
compaction slope can be determined using eq. (2). Studies showed
compaction slope is related to aggregates internal friction directly
[19]. So it can be effective in mixtures shear strength:

%G, %G

%100
log(N,,) log(N,,)
(2)
in which:
G”'l D (3)
% Gmm ,Ndes ?1;
o 0, hdev
A)Gmm,Nim' A)Gmm,NdeS * h_

i

%G mmyNdes aNd %0G(mm) Nini: Asphalt mixture maximum specific
gravity in initial gyration and design gyration respectively,

hy,; and hges: Specimen height in Ny,; and Ny, during compaction
respectively,

G and G Bulk and maximum specific gravity respectively.

3.4.3. Other Parameters

Other parameters like air voids in initial and design gyration (Vay,;
and Vage), gyration number in which maximum shear stress is
given (N-S,,), Voids in mineral aggregates (VMA), height and
density variations were determined for each specimens which only
K, K, and S,, introduced as effective parameters in sensitivity
analysis.

3.5. Rutting Test

Rutting test was performed for each specimen in 50°C, under
700kpa pressure and 60 loads per second as loading rate and the
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rut depth after 8000 cycles were recorded. The results could be
seen in table 5.

4. Presenting Laboratory Model

4.1. Developing a Model using SPSS 19

Predicting a variable behavior using other variables behaviors is
the target of regression. It means to recognize the relation between
effective parameters (x) and affected parameters (y) and to ensure
a meaningful correlation between variables and finally to estimate
a variable using another one. Correlation Coefficient (Rz) is a
parameter which illustrates a relation between model results and
actual results. Two assumptions are considered in regression as Hy
and H;:

Ho:R=0and H;: RA0  (5)

H, assumption should be rejected using sig F change coefficient.
Whatever this coefficient is less, R? meaningfulness is more and so
the model is more validated. This coefficient should be less than
0.05 since reliability is considered as 95% in this model. Statistical
analysis results of 144 data series in SPSS 19 is listed in table 6
and two models were gained as following:

4.1.1. Model Number 1

According to tables 7 and 8, eq. (6) is the output model:

WT =0/009 K, - 0/285K (6)

In which:

WT: Rut depth of Wheel Trucker, mm

K: Gyratory Compaction Slope from eq. (2)

K2: Gyratory Shear Stress Curve Y-Intersect from eq. (1)

As it is obvious from tables 7 and 8, R* is 0.921 for this model
which is meaningful in 95% reliability level.

4.1.2. Model Number 2

According to tables 9 and 10, eq. (7) is determined:

WT =-0/376 K+ 0/008 S, (7)

In which:

WT: Rut depth of wheel Trucker, mm

K: Gyratory Compaction Slope from eq. (2)

Sm: Maximum Shear Stress in Gyratory Curve

As it is obvious from tables 9 and 10, R, is 0.92 for this model
which is meaningful in 95% reliability level.

4.2. Validating the models using ANN

ANN' is a simulation of brain nerve and has learning,
generalization, and decision making power like human’s brain. In
designing the network, after defining a dynamic system
mechanism, the model is trained and system mechanism is saved
in model memory, so this memory is used to estimate new cases.
Neural networks have been used in various aspects of pavement
engineering such as estimating asphalt dynamic and -elasticity
modulus [20-21], bitumen properties effect on asphalt features
[22] and Mixture Compaction Quality Control [23].

A neural network is composed from several processors which are
called neurons or nodes. Each neuron is connected to other
neurons with oriented lines having specific weight. Weight shows
the amount of information used by network to solve the problem.
Neurons are organized in groups called layers. Generally there are
two layers to connect network with out of it as input layer (to get
input data) and output layer to transfer answers out of network.
Other layers between these two layers are called hidden layers.
Network input and output layer number depends on dependent and
independent variables of the desired relation respectively. Both
models in this paper have two independent variables and one
dependent variable, so the network in both of them has two input
neurons and one output neuron (figure 4).

Figure 5 shows input (I) and output (O) and a hidden neuron
structure. B and w parameters could be set up and f function type

12 Artificial Neural Network

is selected by designer so the neuron output is desired.
Determining b and w for total network is called network training.
Network output is compared with actual observations and error is
calculated in training process. Coefficients are modified based on
this error. Whatever root mean square error (RMSE) is closer to
zero, error is less, so the model is better.

R? is the statistical index to validate output accuracy which
whatever closer to 1, more precise the model is.

(x; Xy, ¥)
NEEE N
MATLAB 2008 software was use for coding the network. About
67% of data were used for training the network after normalizing
by eq. (10) and remained data were used for validation.
Xn:(X*Xmin)/(X1nax7X1nin) OSXnSl
(10)
4.2.1. Neural Network results for model number 1 (WT=0.009K >-
0.285K)
Considering two neurons in input layer and one in output and
using 5, 10, 15 and 20 neurons in median layers, results were
obtained as table 11 and figure 6. R? were determined as 0.8578 in
best structure in validation phase as it is stated in table.
4.2.2. Neural Network results for model number 2 (WT=-
0.376K+0.008S,,)
Neurons and layers number were assumed as the network for
model number 1 and the results are illustrated in table 12 and
figure 7. R? was determined as 0.8846 in best structure in
validation phase as it is clear in table.
4.3. Validating models Using GA
Genetic Algorithm (GA) is a method of optimizing and validating
data which using a natural inception performs based on evolution
principle (Survival of the fittest). GA applies survival fittest rule
on a set of solutions to obtain better answers. Better estimations of
solutions are calculated using a selection process proportional to
answer costs in each generation and reproduction selected answers
with functions imitated from natural genetic. Hence the new
generation is more compatible with problem condition after this
process. Independent variables should be determined such that less
variation existed between actual answer and estimated answer of
dependent variable of that model in each step of evolution (figure
8). MATLAB 2008 software was used for coding and Excel 2007
for comparing the results in this study.
3.4.1. GA results for model number 1 (WT=0.009K »-0.285K)
As it is illustrated in figure 9, 0.965 is obtained as determination
coefticient for this model.
3.4.2. GA results for model number 2 (WT=-0.376K+0.008S,,)
As it is illustrated in figure 10, 0.8575 is obtained as determination
coefticient.
5. Conclusion
One of the most important consequences of this study is shear
stress modeling versus gyration number. It was proofed that
logarithmic model results in the best trend. This curve has two
main parts. The first part can be named as compaction phase,
which has an intense slope. Shear stress variation in this part is
more than condensation part. Voids variation of first part is more
that the second one too. Two models for predicting rut depth were
presented using Y-Intercept of this relation, compaction slope and
maximum shear stress. Compaction slope coefficient is negative in
both of the models. In other words specimens with more
compaction slope are more resisted to rutting which is due to more
internal friction and structural establishment of them. Maximum

R 2
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shear stress positive coefficient and shear stress curve intercept of
these models states that asphalt mixtures with more shear stress in
compaction phase are exposed to rutting more. Simply means
more shear stress in condensation phase in comparison with
compaction phase shows more shear strength of the mixture.
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8. Tables

Table 1. Aggregates gradation for Binder and Topka layers [18]

Siewe Specification Murmber 4 Continuous Gradation Mumber 5 Continuous Gradation
Sieve Inches Fassed Range Fassed Remained JFassed Range Fassed Remained
Mumber fWeight %) (Average weight %) | (Weight %) Weight %) fAverage weight %) | feight %)
19 - 314 100 100 0 - - -
125 - 112 40-100 85 5 100 100 1]
8.5 - 318 - - - §0-100 45 5
475 4 - 44-74 59 36 55-85 70 25
2.36 ] - 28-58 43 16 32-67 485 205
1.18 16 - - - - - - -
0.6 30 - - - - - - -
0.3 50 - 5-21 13 30 7-23 15 35.4
014 100 - - - - - - -
0.07a] 200 - 2-10 ] 7 2-10 i g
Table 2. Determined OBC for 16 various asphalt mixture combination
Limestone Specimen Specification A4P6 A4P8 ASP6 ASP8 A4A6 A4A8 ASA6 | ASA8
OBC 5.81 5.70 5.92 5.80 6.16 5.90 6.24 6.00
Silica Specimen Specification S4P6 S4P8 S5P6 S5P8 S4A6 S4A8 S5A6 S5A8
OBC 5.05 4.96 5.24 5.02 5.40 5.15 5.45 5.25
Table 3. N;,;, Nyes and N, in SGC
Maximum Design Temperature Average
ESAL <38 °C 3540 1T 42 1T 4344 1T
10° N-initial | N-design | N-max N-initial | N-design | MN-max N-initial | N-design | MN-max H-initial | H-design | M-max
< 0.3 7 &g 104 7 T4 114 7 T8 121 7 a2 127
0.3-1 7 76 117 7 a3 129 7 a5 128 g o] 1456
1-3 7 a6 134 g a5 150 g 100 158 g 105 167
3-10 g aG 162 g 106 169 g 113 181 a 119 182
10-30 g 108 174 g 121 185 g 128 208 a 135 220
-1 g 125 204 g 129 228 g 14 240 10 153 253
=100 a 143 235 10 158 262 10 165 275 10 172 2aa8
Table 4. Determining Correlation Coefficient of presented model for all gyratory shear stress curves
(144 specimens)
Correlation Coefficient (R%)
Total
R’ Range 100-95 95-90 90-85 85-80 80-75 <75
Number of Specimens 79 34 10 11 5 5 144
Percent 54.86 23.61 6.94 7.64 3.47 3.47 100
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Table 5. Gyratory compactor and rutting test results for 144 specimen

Lirmestone |Bitumen | Differance) Rut taximum| Limestone Biturmen | Differance, Rut tolaximum
Specimen | Percent|  Wiith Dapth K K1 k2 shear |Specimen |Percert| With Uepth K K1 k2 shear
Number | (Fb) oBcC {mm) (&m) | Mumber | (Pb) oBcC {mm;) (5m)
1] Ad4P6 AL 10644 | 75684 | vaD.68] 1065 [ 1] S4P6 8.71 0314 |55 .663 | 82882 1074
HE I RRE 04 463 10.984|63.005|775.03| 1065 |Z| 34PG | 46 04 T35 7005 | 56408 84306 1086
3| AP 284 | 10.400|45.620 | 21094 1019 | 3| 54P6 .20 M6 | 56843 (#1665 1067
1] A4PG 182 11168 [ 65.583 | 785.62) 1083 | 1| S4P6 5.40 2432 5213|8585 1085
I ARG | 58 0.0 434 [ 10693 6748877330 1068 | 2| s4P6 | 59 0.0 7.01 0307 | 56060 | 84524 1082
3| AP 385 10964 [ 53.719 [ 787.096) 102G | 3| S4P6 6.06 760|537 861.23) 1094
1] A4Pi 578 11,122 [G3.118|770.88) 1028 | 1] S4P6 280 T | 46.F2T | 83035 1086
AR 0.4 349 10304 | 67758 | 73696 1074 |Z|34PG | 56 0.4 547 8347 | 54060 |84 .60 1076
3| ARG 7.05 7.044 | 50202 | 806.8%) 1062 | 3| S4P6 0.45 TA8E | 3T A0 M7 .44 1077
1] A4Pa .69 11.668 [66.131|738.85) 1009 | 1] S4P8 7.11 T4 | 5457284607 1076
AR 04 .01 10,506 | 43.520 | 83217 1016 | 2| 34Pg | 44 04 371 T.740 | 50005 | 843 66) 1053
3| AdPE 365 11.166 | 58347 [805.62| 1052 | 3| 54P3 347 7478 |56.7A7 (83118 1073
1] A4Pa 313 10687 [G2.514|765.71| 1044 | 1] 54P3 547 7706 | 46502 (26018 1065
2| 24P 57 oo 265 10 866 |49 965 (82030 1037 |Zz|s4Ps | AD oo 434 TA50 46117 (86123 1043
3| AdPE 4.07 10546 (49920 (220,97 104 | 3| 54P3 635 5167 [49670 (25026 1068
1] A4Pa 346 10.732 | 62064 | 76315 1043 | 1] 54P3 11.57 | 9608 (50504 (02620 1141
2| edpa| B2 0.5 3487 0834 [38.115| 84482 1019 |z|sd4pa | 55 0.5 534 5454 | 46644 87338 1071
3| AdPE fi 63 9.637 | 24287 | T34.04] 84S 3| 54P8 5 fid 5116 |44 116 882.81) 1073
1| A5P6 1.38 10064 | 35803 | G86.46) 845 1| 56P6 TA7 7436 |51.705 (84583 1070
2| AEPE | G4 05 1.38 9.93% | 41.004|699.90] 873 2| 55P6 | 47 05 5.44 7650 |55.065 | 85465 1089
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Table 6. Parameters statistical analysis in SPSS 19 results

N Range Minimum Maximum Mean Std. Deviation Variance
WT 144 12.82 0.45 13.27 5.1768 2.32230 5.393
k 144 5.59 6.08 11.67 8.3197 1.34949 1.821
k1 144 57.46 18.22 75.68 47.6105 9.78674 95.780
k2 144 305.65 621.48 927.13 809.1351 58.07185 3372.339
Sm 144 328.00 813.00 1141.00 1018.2569 69.97280 4896.192
Table 7. Model Number 1 statistical specification summary
j . Ch: Statisti
Model R R Square Adjusted R Std Error of the .ange atistics
Square Estimate Sig. F Change
1 0.921 0.848 0.845 2.22973 0.000
Table 8. Model Number 1 independent parameters coefficients
Un standardized Standardized 0.95 % Confidence Intervall
Coefficient: Coefficient: for B
Model oefficients oefficients T Sig. or -
B Std. Error Beta Lower Bound pper
Bound
| k -0.285 0.114 -0.423 -2.493 0.014 -0.511 -0.059
k2 0.009 0.001 1.332 7.846 0.000 0.007 0.012
Table 9. Model Number 2 statistical specification summary
j h: tatisti
Model R R Square ACILICOS Std. Error of the Estimate c .ange Statistics
Square Sig. F Change
2 0.920 .847 0.845 2.23541 0.847
Table 10. Model Number 2 independent parameters coefficients
Un standardized Standardized 0.95% Confidence
Coefficients Coefficients . Interval for B
Model t Sig. U
B Std. Error Beta Lower Bound| pper
Bound
) k -0.376 0.127 -0.559 -2.967 0.004 -0.626 -0.125
S 0.008 0.001 1.465 7.780 0.000 0.006 0.010

Table 11. Neural Network Run Output for Model Number 1 (for 5, 10, 15 and 20 neurons in a hidden layer)

Training Phase Validation Phase
Neural Network Structure
R’ RMSE R’
2-5-1 0.6403 0.0192 0.5411
2-10-1 0.7942 0.0120 0.7509
2-15-1 0.8491 0.0091 0.8438
2-20-1 08698 0.0085 0.8578

Table 12. Neural Network Run Output for Model Number 2 (for 5, 10, 15

and 20 neurons in a hidden layer)

Training Phase Validation Phase
Neural Network Structure
R’ RMSE R’
2-5-1 0.6282 0.0197 0.4578
2-10-1 0.7892 0.0171 0.5985
2-15-1 0.8595 0.0112 0.7809
2-20-1 0.8900 0.0085 0.8846
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9. Figures
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Fig 1. Rutting due to underneath layer deformation
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Fig 2. Rutting in asphalt layer due to lack of shear strength
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Figure 3. Shear stress modeling versus gyration number (for one of the limestone specimens, gradation number 4, rock powder as the
filler and 60-70 bitumen)
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Figure 4. ANN Layers
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Figure 5. Neural Network Architecture
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Figure 7. 1-20-2 structure curve in validation phase of model number 2 (best structure with R*=0.8846)
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Fig 9. a) Regression on actual and estimated values of model number 1, b) Comparison between actual and estimated values of
model number 1 during evolution
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Fig 10. a) Regression on actual and estimated values of model number 2, b) Comparison between actual and estimated values of
model number 2 during evolution
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