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Abstract. An AG-group is a generalization of an abelian group. A groupoid (G, ) is called an AG-group, if it
satisfies the identity (ab)c = (cb)a, called the left invertive law, contains a unique left identity and inverse of its
every element. We extend the concept of AG-group to fuzzy AG-group. We define and investigate some structural

properties of fuzzy AG-subgroup.

[I. Ahmad. Amanullah, and M. Shah. Fuzzy AG-Subgroups. Life Sci J 2012;9(4):3931-3936]. (ISSN:

1097-8135). http://www.lifesciencesite.com. 586

Keywords: AG-group; conjugate AG-group; normal AG-group, fuzzy AG-subgroup

1. Introduction

A fuzzy subset u of aset X isa function from X

to the unit closed interval [0, 1]. The concept of fuzzy
subset of a set was initiated by Lofti A. Zadeh [1] in
1965. Zadeh’s ideas developed new directions for
researchers worldwide. The concept of fuzzy subset of
a set has a lot of applications in various fields like
computer engineering, Al, control engineering,
operation research, management sciences and many
more [7]. Lots of researches in this field show its
importance and applications in set theory, algebra, real
analysis, measure theory and topological spaces [2].
Rapid theoretical development’s and practical
applications based on the concept of a fuzzy subset in
various fields are in progress.

In 1971, Azriel Rosenfeld introduced the
notion of a fuzzy subgroup [4]. Recently the
structure of AG-groupoid (a groupoid satisfying the
left invertive law:  (ab)c =(cb)a is fuzzified [10].

An AG-groupoid is a generalization of a commutative
semigroup. It is also easy to verify that an AG-
groupoid always satisfies the medial law:
(ab)(cd) = (ac)(bd) . Many features of AG-groupoids

can be studied in [6], newly discovered classes of AG-
groupoids and their enumeration has been done in
[11], Quasi-cancellativity of AG-groupoids can be
seen in [12] and construction of some algebraic
structures from AG-groupoids and vice versa can be
found in [13]. In the present paper we are
fuzzifying the structure of AG-group initiated by
[10]. An AG-group is related to an AG-groupoid as a
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group to a semigroup. An AG-group is one of the
most interesting non-associative structures. There is
no commutativity and associativity in AG-group in
general, but an AG-group becomes an abelian group if
any one of these holds in it. AG-groups are not power
associative otherwise it becomes an abelian group.
For these and further studies on AG-groups we refer
the reader to [5, 6].

2. Preliminaries

In this section we list some basic definitions that will
frequently be used in the subsequent sections of this

paper.

A fuzzy subset of X is a function from X
into the unit closed interval [0, 1]. The set of all
fuzzy subsets of X is called the fuzzy power set
of X and is denoted by FP(X). Let xeFP(X).

Then the set {u(X): x e X} is called the image of x
and is denoted by u(X) or Im(X). The set
{x:xe X, u(x) >0}, is called support of ¢ and is
denoted by 4. In particular, 2 is called a finite
fuzzy subset if z~ is a finite set, and an infinite
fuzzy  subset otherwise. Let u,veFP(X). If
u(X)<v(x) for all xe X, then x4 is said to be
contained in v (or v contains ), and we write
pucv(r vou). If ucvand pu=zv, then uis
said to be properly contained in v (or v properly
contains x) and we write gcv (or v o u). Let
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u,veFP(X). Define puvand unv eFP(X)as
follows: Vxe X ,

(ov)(X) = u(x) v v(x)

(LV)(X) = u(X) Av(X) .
In this case xwvand u~v are called the union and
the intersection of 4 and v respectively.

Lemma 1. [5, Lemma 1] Let G be an AG-group.
Let a,b,c,d eG and e is the left identity in G. Then
the following conditions hold in G :

(i) (ab)(cd) = (db)(ca) , paramedial law;

(i) a-bc=Db-ac;

(iii) (@) t=a'b?;

(iv) (ab)(cd) = (dc)(ba) .

Remark 2. We will not reproduce a proof in the
paper if it is similar to that of groups.

3. Fuzzy AG-subgroups

In the rest of this paper G will denote an AG-
group unless otherwise stated and e will denote
the left identity of G .

Definition 3. Let ueFP(G), then u is called a
fuzzy AG-subgroup of G ifforall x,yeG;

() p(xy) = pu(x) A p(y);

(i) u(xY) = u(x).
We will denote the set of all fuzzy AG-subgroups of
G by F(G). u satisfies conditions (i) and (ii) of
Definition 3, if and only if

p(xy ™) = u(x) A u(y) ; VX, y €G.

Definition 4. If x<F(G), then
1 ={x:xeG, u(x) = u(e)}, and
4 ={x:xeG,u(x) >0}

4 is called the support of G.

Proposition 5. is an AG-

subgroup of G.

If £xeF(G). Then g

Proposition 6. If zeF(G). Then 4" is an AG-
subgroup of G.

Definition 7. Let peF(G).
H,, as follows:

For « €[0,1], define
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M, ={x:xeG,u(x) 2o}
M, is called the « -cut, (or o -level set) of 4 .

Definition 8. The binary operation “0” and unary
operation 1 on FP (G) is defined as follows: for
all u,veFP(G) and forall xeG,

(nov)(X) =Au(y) Av(z) 1y, 2€G,yz =x}
and

(L)) = u(x7).

We call zov the product of # and v, and x* the
inverse of u .

Lemma 9. [4, Lemma 1.2.5] Let ueF(G). Then
forall xeG,

(D) wE)zu(x);

(i) () =pu(x").

Theorem 10. Let xeFP(G). Then ueF(G) if
and only if u satisfies the following conditions:

() wmoucy

(i) wtculr pou or pt=p).

The following theorem holds for groups on the
condition of commutativity, and also holds for AG-
groups without commutativity.

Theorem 11. Let x,v eF(G). Then uoveF(G).
Proof. By [10, Proposition 1], FP(G)is an AG-
groupoid. Now using Lemma 1-(iii) we have

(uov)y ™t =ptov?

=pov (by Theorem 10)
also we have,
(ov)o(uov)=(uou)(vov) (by medial law)
c uov (by Theorem 10)

Hence both the conditions of Theorem 10, are
satisfied. Therefore, nov eF(G). L]

Next we give an alternative proof of the same fact.
Let u,v eF(G). Then we have forall xeG,

((uov)o(uov))(x) =A(uov)(y) A(uov)(2):y,z€G,x=yz}
=AMy Av(Y2) 1 V1, Y2 €6y = Y1Y7})

AN () Av(z,) 17,2, €6, 2= 212,})}
=AMy A () : Y1, 2 €G})

AAV(Y2) AV(Z2) 1 Y202, €G X = (Y2 )(2122)}
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=V{(A{uly) A (1) 1 Y1, €GH A
(Av(Y2) Av(Z3) 1 Y2, 2, €G X = (%121)(Y22,)}
(by medial law)

= V() Av(X) 1 x=(N2)(Y22,)}
= (uov)(x)
= ((zov)o(uov))(x) = (uov)(X)
Also we have
(rov)H(x) = pov(x™) (by Definition 8)
=u(y Y av(z ) :y,zeGx=yz=>xt=(y1) =y 2}

(by Definition 8)
= u(y)rv(z):y,2eG,x=yz} (u,veF(G))
= (uov)(X) (by Definition 8)
= (uov) 1 (x) = (uov)(X) VxeG
= (uov) ™ = (uov)
Hence both the conditions of Theorem 10, are
satisfied. Therefore, uzov eF(G). [

Theorem 12. Let u<FP(G). Then the following
assertions are equivalent; for all x,y €G,

() p(xy) = p(yx);

(i) pu(ye) = u(y);

(iii) p(ye) = u(y);

(iv) p(ye) < pu(y).
Proof. (i) = (ii) : Let ye G. Then

u(ye) = u(y-xx)

=u(xt-yx)  (by Lemma 1-(ii))

= u(yx-xt)  (since pu(xy) = p(yx))
=u(xx-y)  (by left invertive law)
= u(ey)

= u(y).

(i) = (iii) : Obvious.
(iii) = (iv) : Let yeG. Then
u(ye) < u(ye-e)

= u(ee-y)
= u(ey)
= u(y).
(iv)=(i): Let X,yeG. Then
w(xy) = p(ex-y)

(by left invertive law)

= u(yx-e) (by left invertive law)
< u(yx)

= u(ey-x)

= u(xy-e) (by left invertive law)
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< u(xy).
Thus z(xy) < u(yx) < p(xy) . Hence p(xy) = p(yx). m

Corollary 13. Let xzeF(G). Then the following
assertions holds; forall x,yeG,
() w(xy) = p(yx);
(ii) r(ye) = (y);
(iii) w(ye) = u(y);
(iv) w(ye) < p(y).
Proof. Since u is an AG-subgroup. So u always
satisfies Condition (iii) of Theorem 12. As indeed,
u(ye) = u(y) A p(e)
=u(y) V yeG.

Hence by Theorem 12, all the conditions holds
always. [

Theorem 14. (uov)(x)=(vou)(xe) Vu,ve FP(G)

and xeG.
Proof. Let xeG. Then we have

(1ov)(X) = vy {u(xy) Av(y ™)} (by Definition 8)
=Vye V(Y ) A 09}
=(vou)(y™-xy)
=(vou)(x-yy)
=(vou)(xe). .

(by Definition 8)
(by Lemma 1-(ii))

Corollary 15. (G, ) is commutative & (FP(G),0)
is commutative.

Remark 16. We note that if 4 is a fuzzy AG-
subgroup of an AG-group G and if X, yeG with
#(x) = p(y) , then z(xy) = p(x) A ().
Suppose p(x) > u(y) . Then
u(y) = p(ey)
= u(xx-y)
= u(yx-x)
> u(yx) A u(x™)
= u(xy) A u(x) (by Lemma 9, and Cor. 13).
Thus u(y) = u(xy) A u(x) and since p(X) > u(y), it
follows that
1Y) = p(xy)
> u(X) A pu(y)
= u(y).
Thus z(xy) = u(X) A z(y) . A similar argument can be

(by left invertive law)
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used for the case w(y) > u(Xx) .

Lemma 17. Let u be afuzzy AG-subgroup of G.
Let xeG then p(xy)=u(y) VyeG if and only if
u(X) = p(e).

Proof. Suppose that u(xy)=u(y) Yy eG, then by
letting y =e, we get that

w(xe) = p(e)
= u(X) = u(e) (by Corollary 13)
Conversely, assume that  z(x)=u(e). Then by
Lemma 9,

u(X) = p(e) = u(y) vyeG
= u(X) > u(y) vy eG, and so,

4(xy) = p(X) A p(y) = pu(y) - Also,

p(y)= p(ey)
= u(xx-y)
= u(yx-x1) (by left invertive law)
> 2(yx) A p(X )
= u(Xy) A u(X) (by Lemma 9, and Cor. 13)

= u(xy)
Thus (xy) = u(y) = p(xy) .
Hence u(xy)=u(y) VyeG. [

Definition 18. If z,v e F(G) and there exists ueG

such that z(x) =v(ux-u™) vxeG, then ux and v
are called conjugate fuzzy AG-subgroups (with
respect to u) and we write, g=v", where

V(X)=v(ux-x7t) forall xeG.

Definition 19. Let xeF(G). Then p is called a
normal fuzzy AG-subgroup of G if,

p(xy-X) = u(y) v,y €G.
We will denote the set of all normal fuzzy AG-
subgroups of G by NF (G).

Theorem 20. Let ueF(G). Then the following
assertions are equivalent; for all X,y €G,

(i) w(xy-x1)=pu(y);
(i) p(xy-x)= u(y);
(i) p(xy-x) < pu(y).

Proof. (i) = (ii): Obvious.
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(if)= (iii):
pOy X < (X Hxy-x ) - (x
= u((x(xy-x1)-x)
= nu((x(xy-x1)-x71) (by left invert. law)
= 1(Oy)x ) - x )
= u((xy-€)-x)
= u((ey-x)-x)
= u(yx-x™)
= u(xx-y)
= pu(ey)
= u(y)
= u(xy- X< u(y) VX yeG
(iii) = (i):
HOY X 2 p((CH(xy - X)) - (k)T
= u(y), (as in the proof (ii) = (iii))
= u(xy-X) = u(y) VX, yeG
Hence z(xy-x™) = pu(y) - =

(by Lemma 1)
(by left invertive law)

(by left invertive law)

Lemma 21. Let ueFP(G). Then u is a fuzzy
AG-subgroup of G if and only if g, is an AG-
subgroup of G, Vae u(G)u{b[0,1]:b < u(e)}.

Theorem 22. Let u<FP(G). Then x4 eNF(G) if
and only if 4, is a normal AG-subgroup of G

Va e u(G)u{b €[0,1]:b < u(e)}.
Proof. Suppose that ueNF(G). Let
aculG)ufbe[01:b<u(e)}. Since peF(G),
M, isan AG -subgroup of G. If xeG and yeu,,
it follows from Theorem 20, that
pOy- X =p(y)za= u(xy-x) 2a,
thus xy-x'eu,. Hence u, is a normal AG-

subgroup of G.
Conversely, assume that g, is a normal AG-

subgroup of G Vae u(G)u{be[0,1]:b< u(e)}. By
Lemma 21, we have peFP(G). Let x,yeGand
a=pu(y).Then yeu, andso xy-x* e pu, .

Hence u(xy-x)>a=pu(y). Thatis, u satisfies

Condition (ii) of Theorem 20. Consequently, it follows
from Theorem 20, that « e NF (G). [

Theorem 23. Let #eNF(G). Then s and 4
are normal AG-subgroups of G.
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Proof. Since ueF(G), it follows from Propositions
5and 6, that s and x4~ are AG-subgroups of G. Let
xeG and y e s . Since u satisfies Condition (i) of
Theorem 20, we have u(xy-x )= u(y) = u(e) and
thus xy-x'es. Hence s is a normal AG-
subgroups of G. Now let xeG and ye . Since
u satisfies Condition (i) of Theorem 20, it follows
that  z(xy-x3) = u(y)>0= u(xy-x*)>0, thus
xy-X*eu . Hence 4" is normal AG-subgroups of

G. n

Theorem 24. Suppose u e FP (G). Let

N(u) ={x:x € G, u(xy) = u(yx) Vy € G}. Then
N(z) is either empty or an AG-subgroup of G if the

restriction of x4 to N(w), /1|N(#) is a normal fuzzy

AG-subgroup of N().
Proof. Here we discuss two cases.
Case: 1. If also peF(G), then by Corollary 13,

N (1) = G and the theorem holds trivially.
Suppose u ¢F(G). Clearly N(u) is
nonempty, because y(ey) = u(e) and
u(ye) = u(y) = uley) = u(ye) vy e G
=eeN(u). Let x,yeN(x). For any
ze G, we see that

u(xyt-z)=u(zy™t-x) (by left invert. law)

Case: 2

= u(x-zy™t) (by Theorem 12)

=u(z-xyY) (by Lemma 1-(ii))
Thus xy ™ e N(u). Hence N(u) is an AG-

subgroup of G. Now by [4, Comment
1.24] if ueF(G) and H is a subgroup

of G, then u|,eF(H), consequently

Hngy e F(Nw).

The fuzzy AG-subgroup N(w) of G defined in
Theorem 24, is called the normalizer of ¢ in G.

Definition 25. For X,y G . Then the commutator
[X,y] of AG-group G is defined as

[x, y1=(xy)(y X

Theorem 26. Let u be a fuzzy AG-subgroup of G.
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Then x eNF(G) if and only if

H([x y]) z u(x) vx,yeG.
Proof. Suppose u isanormal fuzzy AG-subgroup of
G. Let X,yeG, then

a([%, Y1) = (Y)Y X))
= u((y X H(xy))
= u((Y)(Xy ™)
= u(x*-((y)y ™)
> u(X) A p(yx-y ™)
2 p(X) A p(X)

(by Corollary 13)
(by Lemma 1-(iv))
(by Lemma 1-(ii))

(by Lemma 9, and
#eNF(G))

= u(X) .
Hence u([x,y]) = u(X) vx,yeG.

Conversely, assume that u satisfies the

given inequality. Then for all x,y € G, we have
p(a-x7) = pe(xz-x™)

= p((zz ) (xz-x)

= u(((z-x 1z ™)2)

= u((ZxM)(x2))2)

= u((2)(x'z7)2)

= u([2,x]2)

> p([z,X]) A 1(2)

2 u(z) n pu(2) = u(2) .
Thus p(xz-x) > u(z) vxeG .
20, we have u(xz-x*)=u(z) VxeG. Hence u is
normal fuzzy AG-subgroup of G.

(by left invert. law)
(by left invert. law)
(by Lemma 1-(iv))

Then by Theorem

Proposition 27. Let x4 be a fuzzy AG-subgroup of
G. Then u([x,y]) = u(e) vx,yeG ifandonly if u
is normal fuzzy AG-subgroup of G.

Proof. Suppose u eNF(G). Then we have

p(yx-y ™) = u(X) Vx,y €G

< pe(yx-y ™)) = u(x)

< (o) (yx-y ™) = u(x)

< u(((yx-y ™ )xHx) = u(x) (by left invertive law)
< u(CLy ™) (yx)X) = 1(x)  (by left invertive law)
< (Y)Y X )x) = u(x)  (by Lemma 1-(iv))
< u([x, yI-X) = p(x)

< u([x,y]) = pu(e) ; by lemma 17. [
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