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Abstract: In this paper, the approximate analytical solution of Generalized Burgers’-Huxley equations is obtained 
using Optimal Homotopy Asymptotic Method. Unlike homotopy perturbation and homotopy analysis methods this 
method is independent of the small parameter. Using this method one can easily handle the convergence of 
approximation series and adjustment of convergence regions when required. The method is effective, explicit and 
easy to implement. Approximate solution of Generalized Burgers’-Huxley equation, and its special cases Burgers’-
Huxley equation and Huxley equation are considered using the present approach. The results show excellent 
accuracy and strength of the proposed method. 
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INTRODUCTION 

Nonlinear partial differential equations arise in 
distinct fields of engineering and science such as 
chemistry, physics, engineering and finance, and are the 
key point for the mathematical formulation of 
continuum models [1, 5, 19-20]. Particularly, the 
important model of nonlinear partial differential 
equation is Generalized Burgers’-Huxley equation [3, 
5-6, 11, 13-14, 19, 22, 29]. The Burger’s–Huxley 
equation was first studied by Satsuma [24] in 1987, and 
is given by, 

(1 )( ), [ , ], 0,t x xxu u u u u u u x a b tδ δ δα β γ+ − = − − ∈Ω= ≥  (1)  (2)  

with initial condition, 
1

1( , 0) tanh( ) ,
2 2

,u x x x
δγ γ

ω= + ∈Ω⎛ ⎞
⎜ ⎟
⎝ ⎠

 

and boundary conditions, 
1

1 2( , ) tanh( ( )) , ,
2 2

u x t x t x t
δγ γ

ω ω= + − ∈Γ >0⎛ ⎞
⎜ ⎟
⎝ ⎠

  

where 
2

1

4 (1 )

4(1 )

α δ δ α β δ
ω γ

δ

− + + +
=

+
, 

( )2

2

(1 ) 4 (1 )

(1 ) 2(1 )

δ γ α α β δα γ
ω

δ δ

+ − − + + +
= −

+ +
 and  

, ,α β δ  and γ  are constants so that 0,β ≥ 0δ > , 
(0,1)γ ∈ and Γ  is boundary of Ω . Eq. (1) is the 

combine form of Burgers and Huxley equations. When 
0, 1α δ= = , Eq.(1) reduces into the form of Huxley 

equation. Huxley equation is used in nerve pulse 
propagation during nerve fibers and wall motion in 
liquid crystals [23, 25-28]. When 0β = , Eq.(1) gives 
us a well known form of the Burgers’ equation [3, 8, 
30], which has a certain role in shock wave model, 
sound waves in viscous medium, boundary layer 
characteristics and traffic flow, and its detail study was 
presented by Hon and Mao [8] using multi quadric 
radial basis function. Several methods for the solution 
of Generalized Burgers’-Huxley equation have been 
introduced in the literature including variational 
iteration method [3], spectral collocation method [5], 
adomian decomposition method [6], meshless method 
[14] and finite difference method [22]. In this paper, we 
use a recently developed method for the solution of 
Generalized Burgers’-Huxley equation, which is known 
as Optimal Homotopy Asymptotic Method [17]. This 
method has been successfully used for the solution of 
various ordinary and partial differential equations (see 
[2, 9-10, 12, 17-18, 21]). The main advantage of this 
method over other perturbation methods is that it is 
independent of the small parameter. This small 
parameter plays a very important role in determining 
the accuracy of the other perturbation methods as well 
as their validity. The exertion of the small parameter 
into the equation is the difficulty of perturbation 
methods. Therefore, it is the small parameter that 
greatly restricts the application of the perturbation 
method. Furthermore, the homotopy perturbation 
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method and homotopy analysis method are special 
cases of the optimal homotopy asymptotic method. 
 In the next section, we develop the proposed method 
for the solution of Generalized Burgers’-Huxley 
equation.   
METHOD OF OHAM 
  In this section, we present the optimal 
homotopy asymptotic method for the solution of 
boundary value problem of the form 
( )( , ) ( , ) 0, , 0,T u x t f x t x t+ = ∈Ω ≥             (2) (3) 

( , )
( , ) , 0 , ,

u x t
B u x t x

t
Γ

∂
= ∈

∂
⎛ ⎞
⎜ ⎟
⎝ ⎠

                   (3) (4) 

where T  is a differential operator, B  is boundary 
operator, ( , )u x t is the solution of  problem (2)-(3), 

andx t  are spatial and temporal independent variables, 
Γ  is the boundary of the Ω  and ( , )f x t  is a known 
analytic function. Now according to the basic 
formulation of OHAM, T  can be split into two 
differential operators, say L  and N  such that 
( ) ( )( , ) ( , ) ( , ) 0, ,L u x t N u x t f x t x+ + = ∈Ω      

where L  is the differential (linear) operator of Eq.(2) 
so that it is the simplest part of the differential Eq. (2) 
and its analytical solution is easily available. N is the 
differential (nonlinear) operator of Eq. (2) so that it is 
the complicated (remaining) part of differential Eq.(2), 
whose analytical solution may or may not be easily 
available. Let (assuming that) 0 ( , ) :u x t RΩ →  is the 
solution of  

( )0 ( , ) ( , ) 0L u x t f x t+ = , 0
0

( , )( , ), 0,u x tB u x t
t

∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠
 (4)  (5) 

and is continuous function. ( , ) :u x t RΩ →  is the 
solution of Eq.(2), which is also continuous. Then 
according to OHAM, we can define a homotopy 
( ), ; : [0,1]F x t p RΩ× → which satisfies  

( ){ }
( ){ }

(1 ) ( , ; ) ( , )

( ) ( , ; ) ( , ) 0 ,

p L F x t p f x t

H p T F x t p f x t

− + −

+ =

 (5) (6) 

where x∈Ω  and [0,1]p∈  is the embedding 
parameter, ( )H p  is a auxiliary function for Eq.(2) such 
that ( ) 0H p ≠  for all (0,1)p∈  and (0) 0H = . 
Obviously, we have at 0,p =  Eq.(5) becomes 

( )0 ( , ) ( , ) 0L u x t f x t+ =  and at 1,p =  Eq. (5) 
becomes 
( ) ( )( , ) ( , ) ( , ) 0N u x t L u x t f x t+ + = .   

Also clearly by definition of homotopy  
     0( , ; ) ( , ), at =0F x t p u x t p= ,  
     ( , ; ) ( , ), at 1.F x t p u x t p= =  

Thus, we have as p varies from 0 to 1 , 

( , ; )F x t p  varies (or deforms) from 0 ( , )u x t  to ( , )u x t , 

where 0 ( , )u x t  is the solution of problem given in 
Eq.(4) which is obtained from Eq.(5) and Eq.(3) at 

0p = . Now according to OHAM, one can choose 
general form of the auxiliary function ( )H p for the 
differential equation such as  

2 3

1 2 3( ) ........ ....k

kH p C p C p C p C p= + + + + +   

where 1 2 3, , , ..., , ...kC C C C  are constants to be 
determined later. 

We want to approach to approximate solution 
of (2). For this, we expand 1 2( , ; , , ...)F x t p C C  in 
Taylor’s series with respect to p as 

1 2 0 1 2
1

( , ; , , , ...) ( , ) ( , ; , ... ) .k

k k
k

F x t p C C u x t u x t C C C p
∞

=

= +∑  (6)  

According to the value of 1 2( , ; , , ...)F x t p C C  
in Eq. (6), we expand Eq.(5) and equating the 
coefficients of like powers of p. Then in addition, we 
obtained the zeroth-order problem defined in Eq. (4) 
and the obtained first and second order problems are 
defined by 
 1 1 0 0( ( , )) ( ( , ))L u x t C N u x t= ,   

1
1

( , )
( , ) , 0 ,

u x t
B u x t

t
∂

=
∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

and 

( )
( )

2 2 0 0 1 1 0 1

1 1

( ( , )) ( ( , )) ( , ), ( , )

(1 ) ( , ) ,
L u x t C N u x t C N u x t u x t

C L u x t

= + +

+
 

 2
2

( , )
( , ), 0

u x t
B u x t

t
∂

=
∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

, respectively. 

In general, the obtained governing thk -order 
problem for analytical solution ( , )ku x t is defined by 

( )
1 0 0

1

0 1
1

( ( , )) ( ( , )) ( ( , ))

( ( , )) ( , ), ( , ),..., ( , ) ,

2,3,...

k k k

k

j k j k j k j
j

L u x t L u x t C N u x t

C L u x t N u x t u x t u x t

k

−

−

− − −
=

= + +

⎡ ⎤+⎣ ⎦

=

∑  

( , )
( , ) , 0k

k

u x t
B u x t

t
∂

=
∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

where ( )0 1( , ), ( , ), ........., ( , )k j k jN u x t u x t u x t− −
 is 

the coefficient of k jp −  in the expansion of 

( )( , ; )N F x t p  with respect the embedding parameter 
p  and  

( )1 2 0 0 0 1
1

( , ; , , ,...) ( ( , )) ( , ,......, ) .k

k k
k

N F x t p C C N u x t N u u u p
∞

=

= +∑   

It may be noted that the solution 
( , ), 0ku x t k ≥  are governed by the linear equations, 
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which is the simplest part of the Eq.(3) and with the 
linear boundary conditions that come from original 
problem (3), which can be easily solved. Now the 
interesting result of the above defined homotopy is that 
the series (6) is convergent at 1p =  so that 

1 2 0 1 2
1

( , ; , , ...) ( , ) ( , ; , , ..., )k k
k

u x t C C u x t u x t C C C
≥

= + ∑ . 

Generally speaking, the solution of the Eq.(3) can be determined approximately in the form: 

 

1 2 0 1 2
1

( , ; , , ...) ( , ) ( , ; , , ..., )
m

k k
k

u x t C C u x t u x t C C C
=

= + ∑ . (8)  

The residual of Eq. (3) is obtained by substituting Eq. 
(8) into Eq. (3), we have  

1 2 1 2( , ; , , .., ) ( ( , ; , , ...)) ( , ).R x t C C T u x t C C f x t= +  (9)  (9) 

If residual 1 2( , ; , ...) 0R x t C C = , then 

1 2( , ; , , ...)u x t C C  will be the exact solution of Eq. (3). 
Generally, it does not happen, particularly in 

nonlinear differential equations. To obtain the optimal 
values of auxiliary constants 1 2 3, , , ...C C C , there are 
many methods like Galerkin’s Method, Ritz Method, 
Least Squares Method and Collocation Method for to 
find the values of 1 2 3, , , ....C C C  
  The Least square method in the above 
announced methods, one can apply as follows: 

2

1 2 3 1 2

0

( , , , ...) ( , ; , , ...)
t

J C C C R x t C C dxdt
Ω

= ∫ ∫ ,  

and the values of constants 1 2 3, , , ...C C C  can be 
optimally identified from the following conditions 

1 2 3

....... 0 .
J J J

C C C

∂ ∂ ∂
= = = =

∂ ∂ ∂
 

For the values of 1 2, , ...C C , the approximate 

solution 1 2( , ; , , ...)u x t C C of Eq.(3) is well determined. 

The values of 1 2 3, , , ..., mC C C C can be determined in 
another way (mentioned in [17] at Eq.(15) ) as follows: 
For example, if , 1, 2, 3, ...,ih i m∈Ω =  and substituting 

ih  into Eq.(9), we obtain the equations 

1 1 2 2 1 2

1 2

( , , , ..., ) ( , , , ..., ) ...

( , , , ..., ) 0,

m m

m m

R h C C C R h C C C

R h C C C

= = =

=
  

at any time t.  

 (10) 

          It can be observed by the application of OHAM 
that the general auxiliary function ( )H p  is useful for 
convergence, which depends upon the values of 

1 2 3, , , ..., , ...kC C C C  can be optimally find by one of the 
above announced methods and is very useful to 
minimize the error. 
RESULTS 

In this section we present the results of 
algorithm outlined in the previous section. The 
accuracy of the OHAM is measured in terms of 
maximum error norm L

∞  defined as: 

max ( ) ( ) ,j j
j

L u u
∞
= −   

where andu u  represent the exact and approximate 
solutions respectively.  

 
EXAMPLE-1 

We consider the Generalized Burgers’-Huxley 
equation [23] given in (1). The exact solitary wave 
solution of Eq. (1) is given by [28],  

( )
1

1 2
( , ) tanh( ( )) , ,

2 2
u x t x t x t

δγ γ
ω ω= + − ∈Ω >0, (10) 

where 
2

1

4 (1 )

4(1 )

α δ δ α β δ
ω γ

δ

− + + +
=

+
 and 

( )2

2

(1 ) 4 (1 )

(1 ) 2(1 )

δ γ α α β δα γ
ω

δ δ

+ − − + + +
= −

+ +
,  

, ,α β δ  and γ  are constants so that 0,β ≥ 0δ > , 
(0,1)γ ∈ . 

 
 
 

For [0,1]Ω = and ( , ) 0f x t = , the initial and 
boundary conditions of the Eq. (1) are given by 

 

Once again by OHAM formulation, one can choose L  
and N for Eq. (1) such as 

( )( )

2

2
( ( , ; )) ( , ; ),

( ( , ; )) ( , ; ) 1 ( , ; ) ( , ; )

( , ; ) ( , ; ) ( , ; ),

L F x t p F x t p
x

N F x t p F x t p F x t p F x t p

F x t p F x t p F x t p
t x

δ δ

δ

β γ

α

∂
=
∂

= − −

∂ ∂
− −
∂ ∂

 

with initial and boundary conditions are 
 
 
 
 

With the help of selected L  and N of the Eq. (1), we 
can generate series of problems and first problem of 
this series is zeroth-order problem is defined by 

2

02 ( , ) 0 ,u x t
x
∂

=
∂

                                       (11) 

( )
( )
( )

1

12 2

1

1 22 2

1

1 22 2

( , 0) tanh( ) ,

(0, ) tanh( ) ,

(1, ) tanh( (1 )) .

u x x

u t t

u t t

γ γ δ

γ γ δ

γ γ δ

ω

ω ω

ω ω

= +

= +

= + −

( )
( )
( )

1

12 2

1

1 22 2

1

1 22 2

( , 0; ) tanh( ) ,

(0, ; ) tanh( ) ,

(1, ; ) tanh( (1 )) .

F x p x

F t p t

F t p t

γ γ δ

γ γ δ

γ γ δ

ω

ω ω

ω ω

= +

= +

= + −
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( )
( )

1

0 1 22 2

1

0 1 22 2

( 0 , ) ta n h ( ) ,

(1, ) ta n h ( (1 )) .

u t t

u t t

γ γ δ

γ γ δ

ω ω

ω ω

= +

= + −

   (12) 

The solution of Eqs. (11)-(12) is given by 

( )
( )( )( ) ( )

1

0 1 22 2

1 1

1 2 1 22 2 2 2

( , ) tanh( )

tanh 1 tanh( ) ,

u x t t

x t t

γ γ δ

δγ γ γ γ δ

ω ω

ω ω ωω

= − +

⎛ ⎞− − − −⎜ ⎟
⎝ ⎠

The first order problem is defined as 

( )

( )( )

2

1 1 1 0 02

1 0 0 0

0 0 0

1 1

( , ; ) ( , )

[ ( , ) 1 ( , ) ( , )

( , ) ( , ) ( , )],

(0 , ) 0, (1, ) 0 .

u x t C C N u x t
x

C u x t u x t u x t

u x t u x t u x t
t x

u t u t

δ δ

δ

β γ

α

∂
= =

∂
− − −

∂ ∂
−

∂ ∂
= =

 

Solving this first order problem, we obtain 

1 1( , ; )u x t C . 
The second order problem is defined as 

( )

2

2 1 2 2 0 0 1 1 0 12

1 1 1

( , ; , ) ( ( , )) ( , )

(1 ) ( , ; )

u x t C C C N u x t C N u u
x

C L u x t C

∂
= + +

∂
+ =

  

( )( )

( )

( )

2 0 0 0 0

0 0 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 2 22

[ ( , ) 1 ( , ) ( , ) ( , )

( , ) ( , )] [ ( , ; ) 1 ( , ; )

( , ; ) ( , ; ) ( , ; ) ( , ; )

(1 ) ( , ; ), (0, ) 0, (1, ) 0.

C u x t u x t u x t u x t
t

u x t u x t C u x t C u x t C
x

u x t C u x t C u x t C u x t C
t x

C u x t C u t u t
x

δ δ

δ δ

δ δ

β γ

α β

γ α

∂
− − −

∂
∂

− + −
∂

∂ ∂
− − −

∂ ∂
∂

+ + = =
∂

The solution of the second order problem 
gives 2 1 2( , ; , )u x t C C . 
The second order approximate solution of Eq. (1) is 
follow: 

1 2 0 1 1 2 1 2( , ; , ) ( , ) ( , ; ) ( , ; , ).u x t C C u x t u x t C u x t C C= + +  (13) 
For the Residual of Eq.(1), we have 

( )( )

2

1 2 1 22

1 2 1 2 1 2

1 2 1 2 1 2

( , ; , ) ( , ; , )

( , ; , ) 1 ( , ; , ) ( , ; , )

( , ; , ) ( , ; , ) ( , ; , ) .

R x t C C u x t C C
x

u x t C C u x t C C u x t C C

u x t C C u x t C C u x t C C
t x

δ δ

δ

β γ

α

∂
= +
∂

− − −

∂ ∂
−

∂ ∂

To find the constants 1C  and 2C , we use the 
procedure given in the previous section, which gives 
the following values:

1 0.974338377203654,C = −  

2 0.05859856342204.C = −  
      By using these values of auxiliary constants into 
Eq. (13), we get the second order approximate 
solution. The absolute errors of the second order 
approximate solution for various values of the 

parameter , , ,α β γ δ are reported in Tables 1 and 2. In 
Table 1, we have compared the results obtained by 
OHAM with those given in [11]. It can be noted from 
Table 1 that the results obtained by the present method 
are more accurate than those given in [11]. In Fig.1, 
we have shown exact and OHAM solutions 
corresponding to 1, 1, 1, 1.α β γ δ= = = =  

 
Table 1: The absolute error of approximate solution 
by OHAM with the exact solution of Example-1 for 

1, 0.001.α β δ γ= = = =  
T X 310u ×  310u ×  810L∞ ×  710L∞ ×

    OHAM ADM [11]
0.05 0.1 0.500003 0.500019 1.60 1.93 
 0.5 0.500021 0.500069 4.73 1.93 
 0.9 0.500101 0.500119 1.81 1.93 
0.1 0.1 0.500009 0.500025 1.60 3.87 
 0.5 0.500028 0.500075 4.73 3.87 
 0.9 0.500107 0.500125 1.81 3.87 
1 0.1 0.500121 0.500137 1.60 38.8 
 0.5 0.500140 0.500187 4.73 38.8 
 0.9 0.500219 0.500237 1.81 38.8 
5 0.1 0.500621 0.500637 1.60 - 
 0.5 0.500640 0.500687 4.73 - 
 0.9 0.500719 0.500737 1.81 - 
50 0.1 0.506240 0.506256 1.60 - 
 0.5 0.506259 0.506306 4.73 - 
 0.9 0.506338 0.506356 1.81. - 

 

 
Fig. 1: Approximate and exact solution for Example-1 
 
Table 2: The absolute error of approximate solution 
by OHAM with the exact solution of Example-1 for 

0.001, 0.001, 1, 0.001.α β δ γ= = = =  
T X 31 0u ×  310u ×  810L∞ ×  

0.005 0.1 0.500000 0.500000 2.11 
 0.5 0.500003 0.500003 6.24 
 0.9 0.500005 0.500005 2.39 
0.01 0.1 0.500000 0.500000 2.11 
 0.5 0.500003 0.500003 6.24 
 0.9 0.500005 0.500005 2.39 
5 0.1 0.500002 0.500002 2.11 
 0.5 0.500004 0.500004 6.24 
 0.9 0.500006 0.500006 2.39 
50 0.1 0.500013 0.500013 2.11 
 0.5 0.500015 0.500015 6.24 
 0.9 0.500017 0.500017 2.39 
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Table 3: The absolute error of approximate solution by 
OHAM with the exact solution of Example-2 for 

0, 1, 0.001.α β δ γ= = = =  
T X 310u ×  310u ×  810L∞ ×  710L∞ ×  

    OHAM ADM [11] 
0.05 0.1 0.500009 0.500030 2.13 1.88 
 0.5 0.500038 0.500101 6.31 1.87 
 0.9 0.500147 0.500172 2.41 1.87 
0.1 0.1 0.500021 0.500043 2.13 3.75 
 0.5 0.500050 0.500113 6.31 3.75 
 0.9 0.500160 0.500184 2.41 3.75 
1 0.1 0.500246 0.500268 2.13 37.5 
 0.5 0.500275 0.500338 6.31 37.5 
 0.9 0.500385 0.500409 2.41 37.5 
5 0.1 0.501246 0.501267 2.13 - 
 0.5 0.501275 0.501338 6.31 - 
 0.9 0.501384 0.501408 2.41 - 
50 0.1 0.512488 0.512509 2.13 - 
 0.5 0.512516 0.512579 6.30 - 
 0.9 0.512626 0.512650 2.41 - 
 

EXAMPLE-2 
When 0, 1α δ= = , Eq. (1) reduces to the Huxley 
equation [11-12, 23, 25]. The OHAM results at the 
selected points of the domain are shown in Table 3 for 

1 and 0.001.β γ= =  
 
CONCLUSION 
 In this paper, an optimal homotopy asymptotic 
method is used for the approximate solution of 
Generalized Burger’s-Huxley equation and its variants 
Burgers-Huxley equation and Huxley equation. 
Excellent accuracy is obtained in comparison with 
exact solution while better accuracy than adomian 
decomposition method is obtained. The results exhibit 
that the present method can be applied for the solution 
of this class of partial differential equations. 

In future work we intend to develop an 
integration of our approaches with formal specification 
language to develop a linkage with computer modeling. 
Formal methods are languages based on discrete 
mathematics used for many applications [31-43].  
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