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Abstract: Background and Objective: The present study aims to present an artificial neural network (ANN)-based 
model for prediction of Late Onset Heart Failure (LOHF) in patients, with no previous Heart Failure (HF) history, 
who experienced non-fatal, first-ever Acute Myocardial Infarction (AMI) without previous history of heart failure. 
Methods: Two models of multilayer perceptron (MLP) and Radial Basis Function (RBF) neural network approaches 
based on decision support system were developed. The MLP model was used to optimize the predicting algorithm 
based on the conjugate gradients descent method.  To design the RBF network, K-Means clustering technique was 
used to select the centers of RBFs,  and k-nearest neighbourhood to define the spread and forward selection for 
determining the optimum number of RBFs. To assess the generalization of the network, K-fold cross-validation test 
was used. A total of 3,109 medical records containing 19 main clinical parameters were used to train and test the 
networks. Results: The findings indicate a reliable performance of the proposed system. The MLP based model 
yields a sensitivity, specificity, and an area under the receiver/relative operating characteristic (ROC) curve (AUC) 
of 87.1%, 90%, and  0.887 ± 0.02, respectively. However, the RBF network shows the above parameters as 84.4%, 
94.3%, and 0.905 ± 0.017, respectively. Conclusions: The proposed intelligence system achieved a high degree of 
diagnostic accuracy (92.9% for MLP and 93.7% for RBF) indicating its high efficiency for clinical diagnosis of 
LOHF. 
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1. Introduction 

Heart failure (HF) is defined as an inability of the 
heart to supply sufficient blood flow as well as oxygen 
to meet the body’s requirements.  There are several risk 
factors can cause  HF such as ischemic heart disease 
because of heart valve dysfunction, hypertension, heart 
attack (myocardial infarction), and cardiomyopathy. 
Heart attack or acute myocardial infarction (AMI) is 
simply cellular  death  of  part  of  heart  muscle  due  
to  the  interruption of blood flow, resulting in shortage 
of oxygen in myocardium. Without prompt treatment, 
this condition is potentially fatal (Nadar et al., 2005, 
Bordier, 2009). It is noteworthy that over one million 
cases of hospital discharge with HF were registered in 
the United States in 2005, illustrating a 171% rise 
compared to 1979 (Cohn et al., 2000). Furthermore, 
approximately 3.8 million cases of HF were diagnosed 
in American hospitals in 2004(Gheorghiade and Pang, 
2009) . 

The high rate of morbidity and mortality following 
an episode of heart attack is a major concern of 
physicians and cardiologists necessitating development 
of an efficient approach to prevent the heart attack or 

control its consequent complications through analysis 
of information obtained from patients.  This process 
typically consists of numerous clinical visits, 
sometimes involving many paraclinical assessments, as 
well as the physicians own clinical experiences and 
insight to predict the event.  

Nevertheless, there is a growing effort to find more 
accurate and faster solutions for prediction at the macro 
level. In addition to physicians’ efforts, some 
prediction models, based on mathematical and 
statistical methods, have been developed during the 
recent years. The most commonly used methods 
include Bayesian network, logistic regression, and 
neural networks (Barlow et al., 1984, Fabbri et al., 
2008, Hsu et al., 2005, Lang et al., 1997, Pang et al., 
2007, Smits et al., 2010). Particularly, artificial neural 
networks (ANNs) have been successfully used for 
surgical decisions and mortality prediction based on 
initial clinical data (Li et al., 2000). 
      Although the characteristics of HF have been 
studied extensively (Bordier, 2009, Hamner and 
Ellison, 2005, Najafi et al., 2007, Najafi et al., 2008), 
there are only few studies conducted on the prediction 
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of HF using ANN in MI patients (Eggers et al., 2007). 
Furthermore, previous studies showed that an efficient 
prediction of HF following AMI should be based on the 
time of its occurrence.  ] The importance of time-based 
prediction is originated from the different mechanisms 
responsible for    early-onset HF (EOHF) (HF 
complicating an index AMI within the first 28 days) 
and late-onset HF (LOHF) (HF developing beyond 28 
days after an index AMI) (Cohn et al., 2000, Stone et 
al., 1988). The present study was mainly aimed to 
propose  an ANN-based model for prediction of Late 
Onset Heart Failure (LOHF) in patients, with no previous HF 
history, who experienced non-fatal, first-ever AMI without 
previous history of heart failure.  
 
2. Materials and Methods  
Study populations and data collection 
The Perth MONItoring trends and determinants of 
CArdiovascular disease (MONICA) Register covered 
the entire residents of the Perth Statistical Division, in 
an effective manner the metropolis district of Perth, 
aged 25-64 years (Tunstall-Pedoe et al., 1994). We 
have been using the Western Australian Linked 
Database System (WALDS)(Holman et al., 1999) and 
MONICA data from Perth, Western Australia. The 
register consisted of  all main coronary events that  
have occurred, and used the ‘cold pursuit’ method to 
clarify  non-fatal potential instances of AMI through 
surveillance of hospital discharge codes(Tunstall-Pedoe 
et al., 1994). Data were extracted and compiled from 
medical records for each aspect of hospitals with 
International Classification of Diseases (9th revision, 
clinical modification) (ICD-9-CM) code for AMI or 
somewhat acute coronary heart disease (codes 410 and 
411, respectively). The analysis relates to all patients 
with events who met the following criteria: the patients 
had no history of previous HF or AMI and no evidence 
of EOHF; the event fulfilled the MONICA criteria for 
‘definite AMI’ (Stone et al., 1988); and the patients 
were alive 28 days after the onset of AMI symptoms. 
Using the Western Australian Linked Database System 
WALDS (Holman CD et al., 1999), we followed up all 
patients included in our study sample for a subsequent 
admission to the hospital with a diagnosis of HF. To 
capture all cases of HF (even those complicating a 
recurrent AMI), we defined a  patient as having HF 
when he/she had an electronic record for a new hospital 
admission including the ICD-9-CM code for HF (428) 
in either the first or the second diagnostic position. We 
refer to such cases as late-onset HF, as opposed to 
EOHF indicating HF complicating the first-ever AMI 
within the first 28 days. 

A total of 19 variables including demographic 
information, clinical history, symptoms, lab results and 
physical examinations were collected from each 
patient’s paper record (3109 number of the patients 

were used  (2652 male and 457 female)) and then 
normalized under the supervision of cardiologists (see 
Table 1). Patient records often contain missing values. 
In this study, missing values were replaced with the 
normal values assuming that if the readings were 
abnormal they would have been recorded.  

 
Table 1.Characteristics of patients with first-ever non-fatal 
myocardial infarction, Perth MONICA 

Variables Comment 
-Basic information  
Age Normalize on (0 1) 
Sex Male=0, Female=1 
-Medical history  
History of diabetes Absence = 0, presence = 1 
History of hypertension Absence = 0, presence = 1 
History of angina Absence = 0, presence = 1 
Current smoker Absence = 0, presence = 1 
Recurrent MI Absence = 0, presence = 1 
-Presenting characteristics  
Mean of CPK ratio Normalize on (0 1) 
Systolic blood pressure Normalize on (0 1) 
Pulse Normalize on (0 1) 
Shock Absence = 0, presence = 1 
Syncope Absence = 0, presence = 1 
ALVF Absence = 0, presence = 1 
Complication of infarction Absence = 0, presence = 1 
Length of hospital admission Normalize on (0 1) 
-ECG findings  
ST-elevation Absence = 0, presence = 1 
ST- depression Absence = 0, presence = 1 
Q-wave Absence = 0, presence = 1 
Anterior MI Absence = 0, presence = 1 

 
Multilayer perceptron model 

The ANNs are strong tools for prediction, 
classification, generalization, simulation, etc. in 
different applications. Furthermore, neural network 
approach is a way of modelling data, based on 
computer learning which are basically trained to 
perform complex functions in various fields of 
applications including pattern recognition, 
identification, classification, speech, vision , control 
systems, and etc.(Gallant and White, 1992) The multi-
layer perceptron (MLP) networks are one of the most 
widely used neural networks consisting of a great deal 
number of processing elements called neuron. The 
neurons are connected to each other through a set of 
weights. These weights are adjusted based on an error-
minimization technique called back-propagation rule. A 
diagram of the used MLP model with one hidden layer 
is shown in Fig. 1. The specified network consists of 
three layers named as input layer, hidden layers and 
output layer. Each layer has its own number of neurons. 
The input to the node l in the hidden layer is given by  

�_���  = �(�����)

�

���

+ ��  ;                �= 1,2,… .,�             (1) 

where s is the number of neurons in the hidden layer, � 
is the number of neurons in the input layer,  ��  is the 
bias term of the lth neuron of hidden layer, and ���is the 
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weighting factor between uth input neuron and the lth 
hidden one.(Gallant and White, 1992). The output from 
lth neuron of the hidden layer is given by 
�_���� = ��(�_���)  ;                   �= 1,2,… .,�                    (2) 
where ��  is the transfer function of the hidden layer. 
Some of the commonly used transfer functions are 
threshold, Gaussian, logarithm-sigmoid and tan-
sigmoid functions. Because of the bipolar advantages, 
MLP neural networks often make use of the tan-
sigmoid transfer function in the hidden layer; therefore, 
the output from lth neuron of the hidden layers is given 
by 

�� = ������(�_���) =
2

1 + exp(− 2(�_���))
− 1  ;             (3) 

�� �
:[− ∞ ∞]→ �� �

:[− 1 1]; ���������� ������  ≈ [− 2 2] 

The input of the jth neuron in the output layer is given 
by 

�_��� = �(

�

���

��� ��) + ��  ;             � = 1,2,… .,�              (4)  

where �� is the bias term of  jth hidden neuron, � �� is 

the weighting factor between uth neuron of hidden layer 
and the jth neuron of output layer, and �  is the number 
of neurons in the output one (Taylor, 1997).  
And then, the output of jth neuron is represented as follows: 
�_���� = �� ��_����    ;             � = 1,2,… .,�                     (5)  

where �� is the logarithm-sigmoid transfer function of 
the output layer. 

��������_���� =
1

1 + exp�− (�_���)�
  ;                            (6) 

� �2
:[− ∞ ∞]→ ��2

:[0 1]  ;   ���������� ������ ≈ [− 4 4] 

 
Fig 1. System architecture. 

 
The training of a network is a process where the set 

of adjusted parameters (weights and biases) is 
optimized to make the best prediction of the target 
variable based on background variables. MLP networks 
are trained with the standard back-propagation 
algorithm (Gallant and White, 1992). Back-propagation 
algorithm basically consists of two steps: a forward 
step where the signal propagates through the 
computational units until it gets to the output layer and 
a backward step where all synaptic weights are adjusted 
accordingly to an error correction rule. In this method, 

often the adjusted parameters are determined iteratively 
to achieve a minimum mean square error between the 
network output and the target values. In our study, a 
three-layer MLP network, with tangent-sigmoid 
transfer functions in the hidden layer as well as a 
logarithm-sigmoid transfer function in the output layer 
was constructed. 

It should be noted that a complicated network with 
more neurons is capable of solving more sophisticated 
problems. However, increasing the number of neurons 
makes the system vulnerable to the noises present in 
the training data resulting in a condition called over-
fitting. Therefore, a network with fewer neurons 
increases the generalization capability of the system as 
well as weights’ size reduction and more convergence 
of the network to its desired output. On the other hand, 
a network with few neurons can’t learn as good as it 
should. Therefore, there is a challenge between the 
power of generalization and preventing of over-fitting. 
Consequently, one of the main problems with 
implementation of an ANN model is selecting the 
correct number of the neurons. One method to 
determine the optimum number of the nodes in the 
hidden layer is implementing different networks with 
one to thirty nodes, and then the minimum error on test 
data calculates. Number of neurons with the minimum 
error on test data was chosen as the optimum network. 

 

 
 

Fig 2 . Train and test errors of MLP vs. number of hidden nodes. 
 
Radial Basis Function Model 

This network also consists of input, hidden and 
output layers. Input to each hidden neuron is the 
distance between the network inputs and centre of that 
neuron’s transfer function. The network’s output is the 
weighted combination of hidden neurons’ output. The 
network parameters are centre and spread of hidden 
layer’s transfer functions and weights of output layer. 
There are different forms of transform functions but the 
most widely used one is the Gaussian function.  

Setting the centers randomly to the training inputs is 
the simplest method of defining the centers but this 
approach is prone to overfitting. An alternative is to 
cluster the training patterns into groups according to 
some similarity measurement and then assigning nodes 
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to each cluster. The typical method to determine such 
clusters is the k means clustering algorithm. Since it is 
an unsupervised method and data belonging to two 
different groups can be clustered as one, application of 
supervised methods like genetic algorithm (Billings and 
Zheng, 1995), supervised fuzzy c-means (Pedrycz, 
1998) decision tree(Kubat, 1998), have been 
investigated recently.  

Although supervising methods like those mentioned 
can improve the RBF neural network classification 
performance, they are slow to train which can be a 
disadvantage comparing with  the fast learning of the 
MLP achieved through combining an unsupervised 
with a supervised method is a disadvantage of RBF 
against the MLP approach. Forward selection was used 
to determine the number of hidden layer neurons where 
the number of neurons was changed from two to thirty 
and considering the error on test data, optimum number 
of neurons and therefore number of clusters were 
determined (Fig. 3). Spread or width of Gaussian 
transfer functions was determined from the �-nearest 
neighbour heuristic according to the following formula:  

� = �
1

�
��� − ���

�
�

���

�

�
��

                                                          (7) 

where �� is the �-nearest neighbour of c. K = 2 was 
used as suggested previously (Moody and Darken, 
1988). Weights in the output layer were found using the 
pseudo inverse method.  

 

 
Fig 3. Test errors of RBF vs. number of clusters. 

 

3. Results 
Experimental Results and Performance Assessment 

To estimate the performance of the model, a 10-fold 
cross validation method was used. The data set was 
randomly divided to 10 roughly equal parts 
(approximately 310 patients with 6218 data points per 
set). The network was trained on nine parts and tested 
on the remaining part. This procedure was repeated 10 
times so the network error is the average of these 10 
errors. To evaluate the performance of network, 
sensitivity and specificity were calculated. The values 
of sensitivity and specificity obtained for a test with 
continuous output depend on the particular cut-off 
value chosen to distinguish normal and abnormal 

results. Selecting a threshold for a clinical decision 
support depends on the disease in question and the 
purpose of testing, if the disease is serious and 
lifesaving therapy is available, then falsely diagnosing 
a patient as healthy should be minimized (increasing 
sensitivity) and if disease is not serious and the therapy 
is dangerous, then falsely diagnosing a healthy 
individual as a patient should be minimized (increasing 
specificity). So sensitivity and specificity alone do not 
indicate the performance of an experiment and the 
chosen value of threshold is also effective. Altering the 
threshold value does not have any impact on the 
experiment and only provides a balance between 
sensitivity and specificity. Therefore, the best way to 
demonstrate the performance of a test is determining 
values of sensitivity and specificity for all cut off points 
obtained by an ROC curve.   

 

Fig 4. ROC curve comparison of MLP and RBF. 
 

Table 2.  Performance evaluation MLP and RBF 
networks 
 Sensitivity 

(%) 
Specificity 

(%) 
PPV 
(%) 

NPV 
(%) 

AUC ± SE 

MLP 
RBF 

87.1 
84.4 

90 
94.3 

88.4 
93.1 

86.2 
87.7 

0.887±0.020 
0.905±0.017 

 

The network output values range 0-1. Zero 
corresponds to non-LOHF and one to LOHF disease. 
The desired output was based on the final diagnosis of 
physicians according to the patients’ record. MedCalc 
software (v11.1.6) was used to find the threshold value 
which maximizes both sensitivity and specificity 
(Moody and Darken, 1988). Application of MLP with 
16 neurons in hidden layers resulted in sensitivity of 
87.1%, specificity of 90% and ROC of 0.887 ± 0.02 
and using RBF neural networks with 6 neurons in 
hidden layer resulted in specificity of 94.3%, sensitivity 
of 84.4% and ROC of 0.905 ± 0.017 (see Fig. 4-Table 
2).  
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4. Discussion 
As mentioned before heart attack is a major concern 

for physicians and cardiologists that leads to their 
efforts to prevent the complications through analysis of 
information obtained from patients to make sound 
decision and suitable therapy and care.  This process 
typically may consume long time which consists of 
numerous clinical visits, sometimes involving many 
Para clinical tests, as well as the physician’s own 
experiences and insight to predict the event. So, there is 
a growing effort to find more accurate and faster 
solutions for prediction. In addition to physicians’ 
efforts, some prediction models were created. 
Mathematical and statistical methods have been used to 
develop models for prediction. The most commonly 
used methods include Bayesian network, logistic 
regression, and ANN models.  

Nowadays, ANN model because of its high 
efficiency and accuracy is the most popular tool for 
predicting hence this method have been used in very 
large amount of decision systems. The present study 
corroborates that ANNs can be trained from clinical 
data available for the diagnosis of the disease. ANNs 
have the ability to learn classification or pattern 
recognition tasks thus AMI patients are classified into 
two categories, namely LOHF and non-LOHF from 
complex data sets. Furthermore, we presented a 
medical decision support system based on the MLP and 
RBF neural networks architecture to predict the LOHF 
for patients who have experienced their first-ever, non-
fatal AMI but who had never experienced heart failure 
and EOHF.  

 
Conclusions 

In our study, we presented a medical decision 
support system based on the MLP and RBF neural 
network architectures for the LOHF prediction. In 
particular, we identified 19 input variables critical to 
LOHF prediction and encoded them accordingly. The 
system is trained through an improved BP algorithm. A 
database consisting of 3109 cases was used in this 
study and 10-fold cross validation was applied to assess 
the generalization of the models resulting in sensitivity 
of 87.1% and specificity of 90%, whereas for the RBF 
network, these values were 94.3% and 84.4%, 
respectively. The Findings of our study show that the 
proposed systems can achieve very high diagnostic 
accuracy and comparably small intervals, proving their 
efficiency as an alternative and adjunctive option in 
clinical diagnosis decision of LOHF. 
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