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1. Introduction 

Data Envelopment Analysis (DEA) is a 
mathematical programming technique that measures 
the relative efficiency of Decision Making Units 
(DMUs) with multiple inputs and outputs. Charnes 
and et al.(1978) first proposed DEA as an evaluation 
tool to measure and compare the relative efficiency of 
DMUs. Their model assumed Constant Returns to 
Scale (CRS, the CCR model), the model with 
Variable Return to Scale (VRS, the BCC model) was 
developed by Banker and et al. (1984). 

 The Malmquist Index is the most important Index 
for measuring the relative productivity change of 
DMUs in multiple time periods. For the first time, the 
Malmquist Index was introduced by Caves and et al. 
(1982); later DEA was used by Fare, Gross Kopf, 
Lindgren and Ross (FGLR, Fare et al, 1992), and 
(FGNZ, Fare etal.1994) for measuring the Malmquist 
Index. They used DEA model (CRS) and VRS for 
computing Malmquist Index.  

Podinovski suggests the incorporation of 
production Trade Offs in to DEA models, under this 
circumstance (Podinovski 2004), when we use Trade 
Offs in our models, the original technology expands 
to include the new area, Podinovski and et. al (2004) 
show that the production possibility set (PPS), 
generated by the traditional DEA axioms, may not 
include all the producible production points, the PPS 
generated by the DEA models is only the subset of 
the PPS with Trade Offs. Podinovski also describes 
the theatrical development of Trade Offs and 
demonstrated that Trade Offs can improve the 
traditional meaning of efficiency as a radial 
impronment factor for input or outputs (Podinovski, 
2007a, 2007b). 

The rest of the paper is organized as follows: In 
sections 2 describe Data Envelopment Analysis 
(DEA). In section 3 we explain computing of 
common weight. Section 4 shows computing of 
efficiency by using common weight in different 
period. In section 5 we compute Malmquist Index 
based on common weight. The last section 
summarizes and concludes. 
2. Data Envelopment Analysis (DEA) 

Assuming that there are n DMUs each with m 
inputs and s outputs, the relative Efficiency of a 

particular DMUo   1,2,...,o n  is obtained by 

solving the following fractional programming 
problem: 
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Where j is the DMU index 1,2,..., ,j n r

the output index, 1,2,...,r s 	and i the input index 

1,2,..., , rii m y the value of the rthoutput for the jth 

DMU, ijx the value of the i input for the jth DMU, 
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ru the weight given to the rthoutput, iv the weight 

given to the i input. DMUO is efficient if and only if 

1.ow   

DMUO selects weights that maximize its 
output to input ratio, subject to the constraints. A 
relative efficiency score of 1 indicates that the DMU 
under consideration is efficient, whereas a score less 
than 1 imply that it is inefficient. This fractional 
program can be converted into a linear programming 
problem where the optimal value of the objective 
function indicates the relative efficiency of DMUO. 
The reformulated linear programming problem, also 
known as the Linear CCR model, is as follows: 
��
∗ = �� = ���∑ ��

�
��� ���  

Subject to: 
∑ ��
�
��� ���  
∑ ��
�
��� ��� −	∑ ��

�
��� ��� ≤ 0    j=1, 2… n 

 �� ≥ 0         r= 1, 2… s 
�� ≥ 0           i=1, 2… m 
 
3.  Trade Offs Model in Data Envelopment 
Analysis 

Considering the observed output vector as ��  ∈ 

�� and the input vector as  ��  ∈ �� , we assume that 

the inputs and outputs are nonnegative and ��  ≠0, 

�� ≠0 for ����, j=1,2,…,n. 
A Trade Off is a judment of possible variation in 

some input and or output levels, with which DMU 
can work without changing the other inputs and or 
outputs. For example, in the case of two inputs and a 
single output, the trade-off (P, Q) = (2,−1, 0) 
indicates that the DMU can work by increasing the 
first input by two and decreasing the second input 
one without changing its output (for more details, 
see Podinovski, 2004). 

Now, suppose we have � Trade Offs. We shall 
represent the Trade Offs in the following form: 
(��,��), where r = 1, 2 ,…, k. Also, the vector �� ∈ 
��	and  �� ∈ �� modify the inputs and outputs, 
respectively.For using Trade Offs in DEA models, 
Podinovski makes some assumptions and extends 
the axioms of PPS in the following manner: 
Assumption: 
1-All the DMUs should accept the Trade Offs. 
2- Each Trade Off can be used repetitively by the 
DMUs. 
Extended axioms: 
1- (Nonempty). The observed  (��, ��) ∈ T; j = 1, 2, 

..., n. 
2- (Proportionality). If (X,Y)	∈ T , then (�X, �Y )	∈ 
T for all  � ≥ 0.  
3- (Convexity). The set T is convex. 
4- (Free disposability). If (X, Y)	∈ T,	�� ≥ �,	�� ≥
�,then (��, ��) ∈ T. 

5- (Feasibility of Trade Offs). Let (X, Y)	∈T. Then 
for any Trade Off r in the form of (��, ��)	∈T and 
any  �� ≥ 0, the unit (� + ����, � + ����) ∈  T, 
provided that � + ���� ≥ 0 and � + ���� ≥ 0. 
6- (Closeness). The set T is closed. 
7- (Minimum extrapolation). T is the smallest set 
that satisfies axiom 1-6. (Where T is, T = {(X, Y )| 
output vector Y≥ 0 can produced from input vector 
X ≥0}). 
Now, the PPS can be defined on the basis of the 
following. 
The minimal PPS (�����) that satisfies axioms (1) 
− (7) is: 
����� = {(X, Y	)|Y = ��� + ∑ ��

�
��� �� − �, � =

��� + ∑ ��
�
��� �� + �, � ∈ ��

�,� ∈ ��,
� � ∈

��
�	���	� ∈ ��

� }, ( see Podinovski (2004)). 
Based on PPSTO, for assessing the relative 
efficiency of DMUP (p = 1, 2, ..., n) that is defined 
from this PPS, we have the following model: 
DEA model with trade-offs technology and input 
orientation 

 
 ���	�� 

S.t    ��� + ∑ ��
�
��� �� ≤ 	���� 

	��� +� ��
�

���
�� ≥ ��																														(3) 

   �, � ≥ 0, 	��		����		���� 
 

DEA model with trade-offs technology and output 
orientation 

 
���	�� 

S.t    ��� + ∑ ��
�
��� �� ≤ �� 

	��� +���

�

���

�� ≥ 	����													(4)									 

      �, � ≥ 0, 	��		����		���� 

4. Common Weight in Data Envelopment Analysis 
Definition 1:  The virtual positive anti ideal DMU 

is a DMU with maximize inputs of all of DMUs as its 
input and minimize outputs of all DMUs as its 
That is if we show positive ideal DMU with ���������� =

(��, ��) then �̅� = max 	����� � = 1,2,… , �}, (� =

1,2,… ,�) and ��� = min 	����� � = 1,2,… , �}, (� =

1,2,… , �). 
Definition 2: An ideal level is one straight line 

that passes through the origin and positive ideal 
DMU with slope 1.0. In Fig.1 the vertical and 
horizontal axes are set to be the virtual output 
(weighted sum of � outputs) and the virtual input 
(weighted sum of � inputs), respectively and �� is 
an ideal line and ���������� = (∑ �̅���

,�
��� ,∑ �����

,�
��� ) is 

an ideal DMU. The notation of a decision variable 
with superscript symbols”,” represents an arbitrary 
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assigned value. For any ����, ����, if given one 
set of weights ��

, 	(� = 1,2, … , �) and ��
, 	(� =

1,2,… ,�) then the coordinate of points ��, �� and 
N0 in Fig. 1 are (∑ �����

,�
��� , ∑ �����

,�
��� ) and 

(∑ �����
,�

��� , ∑ �����
,�

��� ). The virtual gaps, between 
points �� and ��� on the horizontal axes and vertical 

axes, are denoted as Δ��
�  and Δ��

� , respectively. 

Similarly, for points �� and ��� , the gaps are Δ��
�  

and Δ��
�  . We observe that there exists a total virtual 

gap Δ��
� + Δ��

� + Δ��
� + Δ��

�  to the ideal line. Let the 
notation of a decision variable with superscript ” * ” 
represents the optimal value of the variable. We want 
to determine an optimal set of weights ��

∗	(� =
1,2,… , �) and ��

∗	(� = 1,2,… ,�) such that both 
points �∗ and �∗ below the ideal line could be as 
close to their projection points, �∗� and �∗� on the 
ideal line, as possible. In other words, by adopting 

the optimal weights, the total virtual gaps Δ�∗
� +

Δ�∗
� + Δ�∗

� + Δ�∗
�  to the ideal line is the shortest to 

both DMUs. As for the constraint, the numerator is 
the weighted sum of outputs plus the vertical gap Δ�

� 

and the denominator is the weighted sum of inputs 
minus the horizontal virtual gap Δ�

�. The constraint 

implies that the direction closest to the ideal line is 
upwards and leftwards at the same time. The ratio of 
the numerator to the denominator equals 1.0, which 
means that the projection point on the ideal line is 
reached. Therefore we have following model: 

Δ∗ = min� Δ�
� + Δ�

�
�

���
 

S.t     
∑ �����
�
���

∑ ���̅�
�
���

= 1 

         
∑ ��������

��
���

∑ ��������
��

���
= 1,																							� =

1,2,… , �												(5) 
        Δ�

�, Δ�
� ≥ 0,																																				� = 1,2,… , � 

        �� ≥ �> 0,																																			� = 1,2,… , � 
       	�� ≥ �> 0,																																			� = 1,2,… ,� 

 

ϵ is positive Archimedean infinitesimal constant. The 
ratio form of constrains (5) can be rewritten in a 
linear form, so we have the following model: 

Δ∗ = min� Δ�
�+ Δ�

�
�

���
 

S.t    ∑ u�y��
�
��� − ∑ v�x��

�
��� = 0  

 ∑ u�y��
�
��� − ∑ v�x��

�
��� + Δ�

�+ Δ�
� = 0	 

		j = 1,2,… , n				(6) 
 Δ�
�, Δ�

� ≥ 0,													j = 1,2,… , n 

 u� ≥ ϵ> 0,											r= 1,2,… , s 
 	v�≥ ϵ> 0,												i = 1,2,… ,m 
Then, if we let Δ�

�+ Δ�
� ,	be ∆� (6) is then simplified to 

the following linear programming (7). 

Δ∗ = min� ∆�
�

���
 

S.t    ∑ u�y��
�
��� − ∑ v�x��

�
��� = 0						(∗)   

       ∑ u�y��
�
��� − ∑ v�x��

�
��� + ∆�= 0			 

j = 1,2, … , n				(7) 
        ∆�≥ 0,																	j = 1,2,… , n 

        u� ≥ ϵ> 0,							r= 1,2,… , s 
       	v�≥ ϵ> 0,								i = 1,2,… ,m 
 
If a DMUj was on positive ideal then we use 
definition of the CWA efficiency score of DMUj that 
Liu and Peng (2006) was defined as following 
equation: 

θ�
∗(���)

=
∑ u�

∗y��
�
���

∑ v�
∗x��

�
���

																																		j

= 1,2, … , n							(8) 
Therefore the CWA efficiency score of it is 

1.0. So that constrain (*) in (7) become redundant 
and this model become same the CWA model in 
paper of Liu and Peng (2006). On the other hand, the 
ideal line is the benchmark line. We result CWA 
model is special case of (7) in this paper. Therefore 
DMUj is CWA efficient if  Δ�

∗ = 0	or θ�
∗ = 1 

otherwise, DMUj is CWA inefficient. 
Definition 3:  The performance of DMUj is 

better than DMUi if ∆�< ∆�. (for more information 

about this subject see jahanshahloo and et. al 2010). 
Suppose we have l Trade Offs (P��, Q��)	h =

1,2,… , l					i = 1,2,… ,m					r= 1,2,… , s	the linear 
program of DEA model for evaluating common 
weight:  

Δ∗ = min∑ ∆�
�
���  +∑ ∆�

�
���  

S.t    
∑ u�y��
�
��� − ∑ v�x��

�
��� = 0																																									 

 ∑ u�y��
�
��� − ∑ v�x��

�
��� + ∆�= 0				j = 1,2,… , n				(9) 

 ∑ u�q��
�
��� − ∑ v�p��

�
��� + ∆�= 0			h = 1,2,… , l 

  ∆�≥ 0,																																										j = 1,2,… , n 

  ∆�≥ 0,																																									h = 1,2, … , l 
   u� ≥ ϵ> 0,																																r= 1,2,… , s 
    	v�≥ ϵ> 0,																																	i = 1,2,… ,m 
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Let u�

∗, v�
∗ weights obtaining from solving model (9), 

therefore efficiency of DMUj in Trade Off models of 
DEA by using common weight is: 
                                         

θ�
∗(�� )

=
∑ ��

∗���
�
���

∑ ��
∗���

�
���

																																		j =

1,2,… , n							(10) 
 
5. Computing of Efficiency by using common 
weights in different period and different models of 
DEA 

We can compute θ�(�)
∗�(�� )

(ideal DMU and DMUs in 

period t, frontier period = t), Likewise Previous 
Section, where  x��

�, y��
�are substituted x��, y��. 

(θ�(���)
∗���(�� )

 (ideal DMU and DMUs in period t+1, 

frontier period = t+1)) 
 DEA model of Trade Off technology in input 
orientation, ideal DMU and DMUs in period t, 
frontier period = t+1. 
Phase 1: 

Δ∗(�) = min� ∆�
�

�

���
+� ∆�

�
�

���
 

S.t    
∑ u�

���y��
��

��� − ∑ v�
���x��

��
��� =

0																																									   
 	∑ u�

���y��
����

��� − ∑ v�
���x��

����
��� + ∆�

�= 0						 

												j = 1,2,… , n				(11) 
   ∑ u�

���q��
����

��� − ∑ v�
���x��

����
��� + ∆�

�= 0			 
														h = 1,2,… , l	 
    ∆�

�≥ 0,																				j = 1,2,… , n 

    ∆�
�≥ 0,																		h = 1,2,… , l	 

    u�
��� ≥ ϵ> 0,							r= 1,2,… , s 

     v�
��� ≥ ϵ> 0,						i = 1,2,… ,m 

 
Phase 2: Therefore by solving model (11) we obtain 

v�
∗(���)

, u�
∗(���)

. So efficiency by using common 
weight is: 

θ�(�)
∗���(�� )

=
∑ u�

∗(���)
y��
��

���

∑ v�
∗(���)

x��
��

���

																																		j

= 1,2,… , n							(12) 
 
DEA model of Trade Off technology in input 
orientation, ideal DMU and DMUs in period t+1, 
frontier period = t. 
Phase 1: 

Δ∗(���)

= min� ∆�
���

�

���

+� ∆�
���

�

���
 

S.t    

∑ u�
�y��
����

��� − ∑ v�
�x��
����

��� = 0																																								 

       	∑ u�
�y��
��

��� − ∑ v�
�x��
��

��� + ∆�
���= 0						 

												j = 1,2,… , n				(13) 

       ∑ u�
�q��
��

��� − ∑ v�
�x��
��

��� + ∆�
���= 0										 

						h = 1,2,… , l 
        ∆�

���≥ 0,												j = 1,2,… , n 

        u�
� ≥ ϵ> 0,								r= 1,2,… , s 

       	v�
�≥ ϵ> 0,									i = 1,2,… ,m 

 
Phase 2: Therefore by solving model (13) we obtain 

v�
∗(�)

, u�
∗(�)

. So efficiency by using common weight is: 

θ�(���)
∗�(��)

=
∑ u�

∗(�)
y��
����

���

∑ v�
∗(�)
x��
����

���

								j = 1,2,… , n							(14) 

Likewise we can compute  

θ�(���)
∗�(��� )

	and	θ�(�)
∗���(���)

. 

5. New Method for computing 
Expanded Malmquist Index based 
on Common Weights in different 
models of DEA: 

According computing of θ�(�)
∗�(��� )

, 

θ�(�)
∗�(���)

, θ�(�)
∗�(�� )

….	in previous section, we know: 

EC�∗ = 	
�(���)
∗���(���)

�
(�)
∗�(���)          (15) 

PEC�∗ = 	
��(���)
���(��� )

��
(�)
�(��� )         (16) 

TC�∗ = 	[
�(�)
∗�(���)

�
(�)
∗���(���) 	× 	

�(���)
∗�(���)

�
(���)
∗���(���)]

�

� (17)  

SEC�∗ = [
�(�)
∗�(��� )

�
(�)
∗�(���) 	× 	

�(���)
∗���(���)

�
(���)
∗���(��� )]  (18)   

Where EC�∗ is Efficiency Change based on θ∗, PEC�∗ 
is Pure Efficiency Change based on	θ∗, TC�∗is 
Technology Change based on θ∗and SEC�∗ is Scale 
Efficiency Change based on θ∗. The Malmquist Index 
and its FGLR and FGNZ decompositions are as 
follows (for more details, see Fare and et al., 1992, 
1994). By similar way we can compute Malmquist 
Index. 
Malmquist Index based on θ∗ (MI�∗) = EC�∗ × TC�∗  
(19) 
Malmquist Index based on θ∗ (MI�∗)= PEC�∗ ×  
SEC�∗ ×TC�∗   (20)      
We define: 

EEC�∗ =
�(���)
∗���(��)

�
(�)
∗�(��)                                   (21) 

ETC�∗ = [
�(�)
∗�(��)

�
(�)
���(��) 	× 	

�(���)
�(��)

�
(���)
���(��)]

�

�             (22) 

														REC�∗ = [
�(�)
�(���)

�
(�)
�(��) 	× 	

�(���)
���(��)

�
(���)
���(���)]   (23)   
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Where EEC�∗ is Expanded Efficiency Change based 
on θ∗,   ETC�∗ is Expanded Technology Change 
based on θ∗and EEC�∗ is Regulation Efficiency 
Change based on	θ∗. So 
																Expanded		Malmquist	Index	based	on	θ∗(EMI�∗) =
	EEC�∗ 	× ETC�∗              (24) 
Or  
       
Expanded	Malmquist	Index	based	on	θ∗(EMI�∗) =
	EC�∗ 	× REC�∗ 	× ETC�∗               (25) 
 

If EMI�∗ >1, it shows DMU had progress. 
If EMI�∗ <1, it shows DMU had regress. 

If EMI�∗ =1, it shows DMU had not 
changing. 

                 
We define Malmquist Index Disparity and Expanded 
Malmquist Index Disparity: 

EMID =
EMI� − EMI�∗

EMI�
× 100																								(26) 

 
6. Conclusion 

For obtaining relative Efficiency of DMUs, 
we use means of weights and by using this method 
we compute Malmquist Index. The result seems be 
quite satisfactoriness. By using new method 
(common weights in Trade Off models in DEA) we 
can rank DMUs by logical criteria, that you can see 
the result from performance this method in numerical 
example.  
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