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Abstract: In this paper ,we investigate the asymptotic behavior of the differential equation

v+ [_a‘i?‘[l‘) - q[l‘)}}' =0, 0= x = 1. Where [®,1] contains a finite number of zeros of (), the so
called turning points, A is a real parameter and the function g [R:I is bounded and integrable in ['Djl] . Using a
technique used previously in [7], we derive the higher-order asymptotic distribution of the positive eigenvalues
associated with this equation for the Neumann problem(i.e, _‘»"'('D) =y (1) = 0). In most differential equations
with variable coefficient it is impossible to obtain an exact solution, so we want to obtain asymptotic distribution of

the eigenvalues without solving equation.
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1. Introduction
We study the
probler_n
y"+ (ir(x) —q(@)y =0, agx< b (1
¥'(@) =¥'(5)=0,

indefinite Sturm-Liouville spectral

defined on the interval [-:‘f.J 1"2'] where A is a real
parameter, (x),q(x) are real and integrable on
[a, b]; moreover,

f: Jre(t)dt = 0, where . (x) = max{r(x),0}.
(2)

It follows from [2] that the spectrum of this problem is
discrete and has no finite accumulation points;
moreover, only finitely many eigenvalues lie the
outside the real and imaginary axes. In what follows,
we shall assume that A is a positive parameter. In [4] it
was shown that the asymptotics of the eigenvalues is of
the form

A :
L o ra (E)de (3)

I

Our goal is to refine the asymptotics under the
additional assumptions of smoothness of the functions
r [R:I and § [ﬁ.:l In addition, we assume that 7 [ﬁ.:l has
a finite number of zeros, which are called turning
points.

The outline of our paper is as follows. First, we find the
asymptotics of eigenvalues for one turning point. Next,

http://www.lifesciencesite.com

2975

using a technique previously in [9], we derive the
higher order asymptotic distribution of the positive
eigenvalues in the case of two turning points. Finally,
in the case of an arbitrary finite number of turning
points it can be reduced to the two cases discussed
above.

2. The case of one turning point
First, consider the case
r(x) = (x — x,)vh(x),h(x) = 0.

To simplify the formulas, we assume that x varies on
the closed interval with endpoints @ and &, where
r(a) = Oand+(b) = 0. The turning point x, lies
between @ and b.

We distinguish four different types of turning points:

| ifl, is even and r(x) < Oin[a, b]

P 11 ifl iseven and r(x) > O0in[a, b]

v )1l ifl isodd and r(x) < Oin[x,, b]
IV ifl is odd and v(x) > Oin[x,,b]

is called of type x,,. By Langer's transformation we can
make zero of 7] the origin. To be specific, let us

define the Langer's transformation & () for different
type of TP.
For a turning point of Type I :

i [® r_my 1/2 I‘a’r;:T: . |
g 0o x|
(07 (r@p*an® x,<x

¥

[

g
-
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For a turning point of Type II :

= (UF: 3 (f]df}f: - 34

&pr () ” . )
L{L..T(r) *ditfivs x, <x.
For a turning point of Type I1I :
'r.-_l’._. o I e ..:_- orpm®
[LJ__ P28y dryieE x < x,
Em(x) =1 oz ©
(- (- dey= x =
For a turning point of Type IV :
(%f%ﬂﬂﬂ“ﬁﬁ?x{a
() =+ ) %

[ coreaps v za
From [9] we rewrite showing the connection between
the argument of complex valued solution of (1) in the

interval containing one of the turning point say, x,,,
and the argument of complex valued solution of
Sturm-Liouville equation with one turning point in
zx = 0 in the same interval. In fact the following result
illustrates a crucial relationship between a general
problem ((1)) with a turning point at X, to a
transformed problem in which is mapped to

x = 0.We show that such a transformation preserves
the argument of any fixed complex valued solution.

Theorem 1Let z be a strictly complex -valued solution
of the differential equations

v+ (p%r(x) — q(x))y = 0,x € [01] (¥
and W be a solution of

W+ (—1) D R, ()W = 0,8 € [.d](9)
then on the interval [x,, — & x,, + £]
argW(&(x)) = argz,

where r(x) = H”_i (x— 1‘-)".5::1::,: (x) and

R,(D) = (DY {——} + G alx(@),

M, = the number of turmng of type (III) or (IV) in
[1‘;{, 1), or one can see that

(-1 = (—1)%F e c 20 < d

2= G

Thetransformation & () is Langer's transformation.
Proof: For proof see [9].

>

-

3.The main result
We begin by consolidating some results from [5,9] for

completeness. For a complex-valued solution
O(x,4), of
v+ Ay =4, (£o)
http://www.lifesciencesite.com
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we form the derivative

1y (x, A) = 0'(x, ) /0

for each x € [a, &] since the real and imaginary parts

logarithmic
(:-.‘, fl) . a quantity that exists

of {1 are linearly independent solution of [E ,:] The
quantity 73 {x,4) is defined by setting

r(x2) = = [T a(r)e kel ey,

while the 7,(x,A) are defined recursively
(fornz= 1)by
Tea (6 2) = [ 1206 Dexp(2 Ty [ (s, Dds)dt

It follows (. [4]) that the function
ra,A) = Zomg Tl A):= §(x,A) +iT (x, 4)
is a series solution (in %) of the Riccati equation

o =g —Ax® — 2

from which one can reconstruct solutions of (1) with
Neumann condition

v'(a) = v'(b) = 0 via the following result:

Theorem 2(see Harris-Talarico[4]) There exists 4 0
such that any real valued solution of

v+ (AxF —g(x))y =0 (10)

can be expressed as :

Flx,AV=r¢ e-'gs'”'d“cos ca + [ T(t, dt
1 = a

for x € [a,b](a <=0 < &) and [4] = A; where
¢y, 05 €ERIFZ(., A) satisfies

v(a)cosy +v'(a)siny = 0 (11)
then
£, =:cf = ﬂi if y=20a
: 3 (12)
= arctan [;r-'.; —5(a, 1) + c::r?}'] ify=0
Similarly,if Z satisfies
v(b)cosf +v'(b)sing = 0 (13)
then
& =l = ﬂ.:'r—':E if g=0 (14)
= nr+ arctan (ﬂ:( S(b,A) + cotﬂ) if f+0
lifesciencej@gmail.com
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for all integer 1.

It follows from (12) and (14) that the eigenvalues of
(10),(11) and (13),i.e., our problem (1), are the values

of A for which

+ j:T(r, A)dt = ¢t (15)

We see from [3 ] , that the asymptotic distribution of the
eigenvalues of (10),(11) and (13) is therefore
determined by the following transcendental equation:

1 N
T + arctan | ——— =50, 4} + cotf =
I, Al S
..:'_/ L ro1 L .
Tit, A)dt + arctan | = ,xjka.({,l—cnt_v]
LT | |
Jg Tlo, 1)
= [ vl Adt —awctaﬂlk , 5(b, &) + coty |
Sy 16
= Pdt + - | ( )
+ arctan l:\ff(a ,A) + coty)
e e
= argllh, A) —arglla. ) — — | xqlal]7 ',\-1:"/121"_1::'1'—---
+ arctan [ —— If'ic.fiil + coty ;l :

\rle

Note that we use the following result from [8],
S [0 r(t. Ddt = argn(h,4) — arg(a, 1) -
7 %)l 24 N )dx.

relation

=[f=-

the above to approximate

By applying
eigenvalues in the case of

u|,1

Theorem 3 Consider the differential equation [l:I on
[c, 5] under condition {2) . Then the positive
eigenvalues admit the following asymptotic
representation:

(@) Let x,, be of type IV Then

1

~H())+

o
(17)

where

ORI ME e e

rix)

?:-1 _D '1—;.:1[1',

and

d

P

~ = arix)

= (—d )— = —rl_ﬂ_ Fix -
WF FOsA

Py

(b)) Let x,, be of type I1I. Then

o). . (18)
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where

iy @) g% ;m1ra F
H@) = [7 (E2- 25 ) Sax,
and .

ZH(a) - ZH(E}+ 2(F)

(19)

where H(a) and H(b) are defined above. Casel:
y=0p="2
(@) Let x,, be of type IV, Then

a Flamy+

o)
(20)
where

gix) 2

HY) = [ G~ ) 2 dx

and
- a2 7 drix)
r= (__:l.) _l:.!—: 2 F;'-

@1
where
xy oqlx) ~—1 /4
H(a) = [T (G5~ Fag /)
and .
_ df. 2 4rix)
T= [d_a) (147 Lﬁ"i-’-""';l

(c) Letx,, be oftype f1. Then

ZHLa) 3 éH[_L_J} +a(3)

(22)
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where H (@) and H () are defined above.

Proof:For proof see [8,9].

2.The cases of two and n turning points

From now then, without losing generalization, we

suppose that the coefficients () and 7%} satisfy:

(i) (x) is real and has in [0, 1] n zeros x,, of order
[.e N , l=v=n
0= x,<<x,<...<x, <1

(i1) The function

bl 2 R— {0} x = r()[[=; (x—x)7
is twice continuously differentiable.

(i) q [R:I is bounded and integrable in 1.

We shall use the symbol {1,-(&, 1) to signify the
complex-valued solution of

w' Lyt Ehw =0,

where

where & is corresponding Langer's transformation of
turning point of type IV. We will use the symbols
“r[m lff:' i ['u li] and £ I:k” li]ln similar case.

Now we can derive the following results on the
distribution of the eigenvalues of (1) with Neumann
boundary condition .

We consider only the following case:
r{0) <= 0r(1) <0
1aT, =1IV.T, =111,

We suppose that the weight function 7 () has in [0,1]
two zeros x4 and X5 where 4 of type IV and xg of
type I1{ . By (11) the distribution of positive
cigenvalue satisfies :

Y. = |

i _ e ) '|"I _ . 11; 1 :
T’l-_i'[= :._‘EJ —ilx =J[J _EI+J —adx
\ o ¥ / \Jo ¥ i X /

S(0.4) . S(1.4)
—ﬂrCtﬂH(T[ﬂ )j arctan (T[l j)
. i3
= fry () dt +—
PL& D+

_L( B, —4 By, —4 )
4o\ [ r@ar [ r(D)dt,

1 4vi-—1 vl —1
4p " [*= [r()dt jj‘f Jrt)dt
- —F‘(fml )+0( ]'

2u
(23)
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where ey, £ (xq,7%,) is such that
f Jr(©de = f " [r(t)dt (the existence of
4, follows by Intermedlate Value Theorem), and
P(x4,%5) = Ppe(xy,@45) + Ppy(xp.045) =
Jj_: Epy(x)dx + f: Epy (x)dx,

s ? TEF LS i = L"»f.-: z'-‘!":-“"‘.‘..'
P (x,.0,, ]—f = L_ ﬂ'l‘: = L e
Fz = S
- ’F_i_:l‘:lidl es J":'_: E zl'jﬂr;l'
FEIE g e %y wl J
and .

g =dy (r)=

0,6(0)=cy,

Pur(Xg:@40) =

g A0X) 4 e
.JFG-___: [.‘?l:.);'_" FE4 Ex

Jr:_ Ep(x)dx.

By inversion, we get

gt 'JJ

|-1||'\-

e T e | ESr R Ve AR 71
=T TR :{ - 5 oo _:F(:“{'i-')"f)}_Ol\“_:)‘(24)
Jp yTlbjar R Ly, TLEIE L n
2.a
T,=IV , T,=T,=..=T,_, =H |,
T, = III,

M

By applying the same method and using theorem
(1).(2) we get :

nmw = Pfi NENOLI I‘H_ﬂj:ﬂ +=

1 4y, —1)"—1 L A — 1)° —

4 [ yr(@®)at 2 r(®adt

LA - 1% — 1 40— 1)* —
[FVr@d [ o

40— 1) - 4V, — 1) -
Fermae T e
‘1‘(")"_,,!_1 - l): -1 ""1'")": - j
Where L,_ Jr(tde j;_?_"_f Jr(t)de
- —Plx pXgpeaa, X )T —a
Zu S %) (s

lifesciencej@gmail.com




Life Science Journal 2012;9(4)

http://www.lifesciencesite.com

Pla,, i ) =
fjn Eyp (a)dx + KT I;+_ Ep (x)+
T LN ER () +

1
+i Ern—-n

E:!-r |::‘.:|d).

and by inversion :

nmw —

e
1[4 -1 1]+ [4(v, —1)7 —1]
n 4 : «Jﬁdr
40— 17— 1] +[4(v; —1)° —1] |
4 JF: Jr(t)dt
[4(v,-y —1)*— 1]+ (4(v,— D*— 1)
4 Jr(Ddt
o 1

ERE

Py =

).

1
= 3Py x5, %5, )] 4 O

Remark. Note that the reader can obtain asymptotic
distribution of eigenvalues in different types of (TP) by
consideration of combination of the above cases.
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