Sufficient condition of a subclass of analytic functions defined by Hadamard product

Muhammad Arif¹, Irshaad Ahmed², Mohsan Raza² and Khalid Khan³

¹Department of Mathematics, Abdul Wali Khan University Mardan, Pakistan ²Department of Mathematics, GC University Faisalabad Pakistan ³Department of Science and Information Technology Govt; KPK, Peshawar, Pakistan marifmaths@awkum.edu.pk (M. Arif), quantized84@yahoo.com (I. Ahmad), mohsan976@yahoo.com (M. Raza), khalidsa02@gmail.com (K. Khan)

Abstract: In the present article we obtain a sufficient condition for a function belongs to a class of analytic functions defined by convolution. The main result presented here includes a number of known consequences as special cases.

[Arif M, Ahmad I and Raza M. Sufficient condition of a subclass of analytic functions defined by Hadamard product. Life Sci J 2012;9(4):2487-2489] (ISSN:1097-8135). http://www.lifesciencesite.com. 367

Key Words: Analytic functions, spiral-like functions, convolution.

1. Introduction

Let the class of all functions

$$f(z) = z + a_{n+1}z^{n+1} + \cdots$$

which are analytic in $E = \{z; |z| < 1\}$ be denoted by A_n and let $A_1 = A$.

A function
$$f(z) \in A_n$$
 is spiral-like of order β , if
$$\operatorname{Re} e^{i\lambda} \frac{zf'(z)}{f(z)} > \beta \cos \lambda, 0 \le \beta < 1,$$

for all $z \in E$ and λ is real with $|\lambda| < \frac{\pi}{2}$. We denoted the class of all such spiral-like functions of order β by $S_{\lambda}^{*}(n,\beta)$. For n=1 and $\beta=0$, this class reduces to the well-known class of spiral-like functions which was introduced by Spacek [4] in 1933.

For any two analytic functions f(z), $g(z) \in A_n$, we define the convolution or Hadamard product by

$$(f * g)(z) = z + a_{n+1}z^{n+1} + \cdots,$$

where $f(z)$ and $g(z)$ are given by $f(z) = z + a_{n+1}z^{n+1} + \cdots,$ and $g(z) = z + a_{n+1}z^{n+1} + \cdots.$

Using the concept of convolution, we define a subclass $Q_{\lambda}(g, n, \beta)$ of analytic functions as follows: A function $f(z) \in A_n$ belongs to the class $Q_{\lambda}(g,n,\beta)$, if

Re
$$e^{i\lambda} \frac{z(f * g)'(z)}{(f * g)(z)} > \beta \cos \lambda, 0 \le \beta < 1$$
,

for all $z \in E$ with $(f * g)(z) \neq 0$ and λ is real with $|\lambda| < \frac{\pi}{2}$. This class gives a transition from the class S^* of starlike functions to the class C of convex functions.

In this paper, we obtain a sufficient condition for a function to be in the class $Q_{\lambda}(g, n, \beta)$. To prove our main results, we need the following Lemma proved in [2].

Lemma. Let Ω be a set in the complex plane C and suppose that ϕ is a mapping from $C^2 \times E$ to C which satisfies $\phi(ix, y; z) \notin \Omega$ for $z \in E$, and for all real x, y such that $y \le -n(1+x^2)/2$. If p(z) = 1 + 2 $c_n z^n + \cdots$ is analytic in E and $\phi(p(z), zp'(z); z) \in \Omega$ for all $z \in E$, then Re p(z) > 0.

Main results

In this section, we study some sufficient conditions for function belongs $Q_{\lambda}(g, n, \beta)$.

Theorem 2.1. If $f(z) \in A_n$, satisfies

$$\operatorname{Re}\left(e^{i\lambda}\frac{z(f*g)'(z)}{(f*g)(z)}\right)\left(\frac{\alpha z(f*g)''(z)}{(f*g)'(z)}+1\right)$$
$$>\frac{M^{2}}{4L}+N,(z\in E)$$

where $0 \le \alpha \le 1$, $0 \le \beta < 1$, λ is real with $|\lambda| < \frac{\pi}{2}$

$$\begin{split} L &= \alpha (1-\beta) \mathrm{cos} \lambda \left[\frac{n}{2} + (1-\beta) \mathrm{cos}^2 \lambda \right] \\ M &= -(1-\beta)^2 \mathrm{sin} 2\lambda \mathrm{cos} \lambda \\ N &= \alpha \mathrm{cos} \lambda \left(\beta^2 \mathrm{cos}^2 \lambda - \mathrm{sin}^2 \lambda \right) \\ &+ \alpha \beta \mathrm{sin} \lambda \mathrm{sin} \, 2\lambda \, \alpha \mathrm{cos}^2 \lambda \\ &+ \beta (1-\alpha) \mathrm{cos} \lambda - \frac{n\alpha}{2} (1-\beta). \end{split}$$

Then $f(z) \in Q_{\lambda}(g, n, \beta)$.

Proof. Set

$$\frac{z(f*g)'(z)}{(f*g)(z)} = q(z) = \cos \lambda \left[(1-\beta)p(z) + \beta \right] + i \sin \lambda. \tag{2.1}$$

Then p(z) and q(z) are analytic in E with p(0) =1 and q(0) = 1.

Taking logarithmic differentiation of (2.1), we have

$$\frac{z(f*g)''(z)}{(f*g)'(z)} = \frac{zq'(z) + e^{-i\lambda}q^2(z) - q(z)}{q(z)},$$

and hence

$$\left(e^{i\lambda} \frac{z(f * g)'(z)}{(f * g)(z)}\right) \left(\frac{\alpha z(f * g)''(z)}{(f * g)'(z)} + 1\right)
= Azp'(z) + Bp^{2}(z) + Cp(z) + D
= \phi(p(z), zp'(z); z),$$

with

$$A = \alpha(1 - \beta)\cos\lambda,$$

$$B = \alpha e^{-i\lambda}(1 - \beta)^2\cos^2\lambda,$$

$$C = (1 - \beta)(2\alpha\beta e^{-i\lambda}\cos^2\lambda + i\alpha e^{-i\lambda}\sin2\lambda + (1 - \alpha)\cos\lambda),$$

$$D = \alpha e^{-i\lambda}(\beta^2\cos^2\lambda - \sin^2\lambda + i\beta\sin2\lambda) + (1 - \alpha)(\beta\cos\lambda + i\sin\lambda).$$

Now

$$\phi(r,s;t) = As + Br^2 + Cr + D.$$
 For all real x and y satisfying $y \le -n(1+x^2)/2$, we have

$$\begin{split} \phi(ix,y;z) &= Ay + B(ix)^2 + C(ix) + D \\ &= Ay - Bx^2 + iCx + D \\ &\leq -\frac{(1+x^2)nA}{2} - Bx^2 + iCx + D \\ &= -\left(\frac{nA}{2} + B\right)x^2 + iCx - \frac{nA}{2} + D \\ &= -\left[\frac{n}{2}\alpha(1-\beta)\cos\lambda + \alpha e^{-i\lambda}(1-\beta)^2\cos^2\lambda\right]x^2 \\ &\quad + i\left[(1-\beta)\left(2\alpha\beta e^{-i\lambda}\cos^2\lambda + i\alpha e^{-i\lambda}(\beta^2\cos^2\lambda - \sin^2\lambda + i\beta\sin2\lambda) + (1-\alpha)(\beta\cos\lambda + i\sin\lambda)\right]x \\ &\quad + \alpha e^{-i\lambda}(\beta^2\cos^2\lambda - \sin^2\lambda + i\beta\sin2\lambda) \\ &\quad + (1-\alpha)(\beta\cos\lambda + i\sin\lambda). \end{split}$$

Now taking real part of both sides, we have

$$\operatorname{Re} \phi(ix, y; z) \leq -\alpha (1 - \beta) \cos \lambda \left[\frac{n}{2} \right]$$

$$+ (1 - \beta) \cos^{2} \lambda \left[x^{2} \right]$$

$$- \left[\alpha (1 - \beta)^{2} \sin 2\lambda \cos \lambda \right] x$$

$$+ \alpha \cos \lambda (\beta^{2} \cos^{2} \lambda - \sin^{2} \lambda)$$

$$+ \alpha \beta \sin \lambda \sin 2\lambda + \beta (1 - \alpha) \cos \lambda$$

$$- \frac{n\alpha}{2} (1 - \beta).$$

Equivalently, we have

Re
$$\phi(ix, y; z) \le -Lx^2 - Mx + N$$

$$= -\left[\sqrt{L}x + \frac{M}{2\sqrt{L}}\right]^2 + \frac{M^2}{4L} + N$$

$$< \frac{M^2}{4L} + N,$$

where L, M and N are given in the hypothesis.

Let
$$\Omega = \left\{ \omega; \operatorname{Re} \omega > \frac{M^2}{4L} + N \right\}.$$

Then $\phi(p(z), zp'(z); z) \in \Omega$ and $\phi(ix, y; z) \notin \Omega$, \forall real x and $y \le -n(1+x^2)/2$, $z \in E$. By an application of Lemma 1.1, we obtain the required result.

By taking $\beta = 0$, n = 1, $\lambda = 0$ and $g(z) = \frac{z}{1-z}$ in Theorem 2.1, we get the result proved in [1].

Corollary 2.2. If $f(z) \in A$, satisfies

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\left(\alpha\frac{zf''(z)}{f'(z)}+1\right)\right\} > -\frac{\alpha}{2}, \ z \in E, \alpha \ge 0,$$
then $f(z) \in S^*$.

If we take $\beta = \frac{\alpha}{2}$, n = 1, $\lambda = 0$ and $g(z) = \frac{z}{1-z}$ in Theorem 2.1, we obtain the following result proved in [1].

Corollary 2.3. If $f(z) \in A$, satisfies

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\left(\alpha\frac{zf''(z)}{f'(z)}+1\right)\right\} > -\frac{\alpha^2}{4}(1-\alpha),$$
then $f(z) \in S^*\left(\frac{\alpha}{2}\right)$.

If we take $\lambda = 0$ and $g(z) = \frac{z}{1-z}$ in Theorem 2.1, we obtain the result proved in [3].

Corollary 2.4. If $f(z) \in A_n$, satisfies

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\left(\alpha\frac{zf''(z)}{f'(z)}+1\right)\right\} > \alpha\beta\left[\beta+\frac{n}{2}-1\right]+\left[\beta-\frac{\alpha n}{2}\right],$$

$$0 \le \alpha, \beta < 1, \text{ then } f(z) \in S_n^*(\beta).$$

Theorem 2.5. Let $\alpha \ge 0, 0 \le \beta < 1$ and λ is real with $|\lambda| < \frac{\pi}{2}$. If $f(z) \in A_n$ satisfies

$$\operatorname{Re}\left\{e^{i\lambda}\frac{(f*g)(z)}{z}\left(\alpha\frac{z(f*g)'(z)}{(f*g)(z)}+1-\alpha\right)\right\}$$
$$>\left[\beta-\frac{n\alpha}{2}(1-\beta)\right]\cos\lambda,$$

then

Re
$$e^{i\lambda} \frac{(f * g)(z)}{z} > \beta \cos \lambda$$
.

Proof. Consider

$$e^{i\lambda} \frac{(f * g)(z)}{z} = [(1 - \beta)p(z) + \beta]\cos\lambda + i\sin\lambda.$$

Taking logarithmic differentiation, we get

$$\alpha \frac{z(f * g)'(z)}{(f * g)(z)} + 1 - \alpha$$

$$= \frac{[\alpha(1 - \beta)\cos\lambda]zp'(z)}{[(1 - \beta)p(z) + \beta]\cos\lambda + i\sin\lambda}$$

$$+ 1$$

So

$$e^{i\lambda} \frac{(f * g)(z)}{z} \left(\alpha \frac{z(f * g)'(z)}{(f * g)(z)} + 1 - \alpha \right)$$

$$= [\alpha(1 - \beta)\cos\lambda]zp'(z)$$

$$+ [(1 - \beta)\cos\lambda]p(z)$$

$$+ (\beta\cos\lambda + i\sin\lambda).$$

$$= \phi(p(z), zp'(z); z).$$

For all real x and y satisfying $y \le -n(1+x^2)/2$, we have

$$\phi(ix, y; z) = [\alpha(1 - \beta)\cos\lambda]y + [(1 - \beta)\cos\lambda](ix) + (\beta\cos\lambda + i\sin\lambda).$$

Taking real part on both sides, we have

Re
$$\phi(ix, y; z) = [\alpha(1 - \beta)\cos\lambda]y + \beta\cos\lambda$$

 $\leq -\frac{1}{2}n(1 + x^2)\alpha(1 - \beta)\cos\lambda + \beta\cos\lambda$
 $\leq \beta\cos\lambda - \frac{n\alpha(1 - \beta)\cos\lambda}{2}$.

Let us take

10/13/2012

Let $\Omega = \left\{ \omega; \operatorname{Re} \omega > \left[\beta - \frac{n\alpha}{2} (1 - \beta) \right] \cos \lambda \right\}$. Then $\phi(p(z), zp'(z); z) \in \Omega$ and $\phi(ix, y; z) \notin \Omega, \forall$ real x and $y \leq -n(1 + x^2)/2$, $z \in E$. By an application of Lemma 1.1, we obtain the required result.

References

- 1. Li JL and Owa S. Sufficient conditions for starlikeness, Indian J. Pure Appl. Math., 2002; 33: 313-318.
- 2. Miller SS and Mocanu PT. Differential subordination and inequalities in the complex plane, J. Differ. Equations, 1987; 67: 199-211.
- 3. Ravichandran V, selvaraj C and Rajalakshmi R. Sufficient conditions for starlike functions of order alpha, J. Ineq. Pure Appl. Math., 2002; 3 (5): 1-6.
- 4. Spacek, L Prispěvek k teorii funkei prostych, *Čapopis Pest. Mat. Fys.*, 1933; 62: 12-19.