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1. Introduction

Mathematical modeling of different problems in
various fields has been discussed using formal
approaches [20-32], fuzzy logic [19] and Differential
equations [1-3]. Differential equations play a vital
role in modeling different problems in physics,
biology, chemical reactions and in engineering
sciences. The one dimension non-linear differential
equation, which is similar to the one dimension
Navier-Stokes equation without the stress term, was
presented for the first time in a paper in 1940 from
Burger. It is the model for the solution of Navier-
Stokes equation and is applied to laminar and
turbulence flows as well. The first theoretical
solution of Burger equation was given by Cole [13]
which is based on Fourier series analysis using the
appropriate initial and boundary conditions. Another
theoretical solution was given by Madsen and
Sincovec [14], based on the “test and trial” method,
using the appropriate initial and boundary conditions.
The Burger equation can be used as a model for
different problems of a fluid flow nature, where
shocks or viscous dissipation is a major factor. It can
be used as a model for any nonlinear wave
transmission problem subject to dissipation [11-15].

The Equal Width Wave (EW) equation was
suggested by Morrison et al., to use as a modelfor the
simulation of one-dimensional wave propagation in
nonlinear media with dispersion processes [17].

Marinca and Herisanuet al. introduced a new
semi analytic method (OHAM) for approximate
solution of nonlinear problems of thin film flow of a
fourth grade fluid down a vertical cylinder. They
used OHAM for understanding the behavior of
nonlinear mechanical vibration of an electrical
machine. By using this method they investigated
solution of nonlinear equations arising in the study of
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fourth grade fluid past a porous plate. The
convergence criterion of proposed method is similar
to that of HAM and HPM, but this method is more
efficient and flexible [1-3]. The proposed method has
been used by many researchers for solution of
Ordinary and Partial Differential equations [5-10].
The objective of this paper is to show the
effectiveness of OHAM for (EWW) and Burger
equations. We consider the EWW equation, derived
for long waves propagating in the positive x-direction
which has the form

3
Ou(x,t) fuet) ou(x,t) a 0 ugx,t) -0
ot Ox ox Ot (1)
And Burger equation of the form
2
ou(x,t ou(x,t) 0 3
QD) |y (20 _THED ()
ot Oox ox
With initial condition given by
-asd
4(x,0) = 0.5+ 05 tanh(——2—x) (3

20 +1)
for all0 <x < land t > 0.candd are parameters
and & > 0.

The whole paper contains four sections. Each of
them is analyzed as follows. The first section is the
introduction. The fundamental theory of OHAM is
given in the section 2.

In section 3 numerical solution of (EWW)
equation is presented by OHAM and absolute errors
are compared with NIM and ADM. In section 4
Comparisons are made between the results of the
proposed method and ADM forBurger equation. In
all cases the proposed method yields very
encouraging results.

Here we start by describing the basic idea of
OHAM, Consider the partial differential equation of
the form:
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L (u (x,t)) + N (u (x,t))+ g (x,t) =0,

xeQ 4)

B(u,0u/t) =0, 5)

where £ is a linear operator and # is nonlinear
operator. @B is boundary operator, u(x,t) is an

unknown function, and X and# denote spatial and
time variables, respectively, Q is the problem

domain and g (x, t) is a known function.

According to the basic idea of OHAM, one can
construct the optimal homotopy

y/(x,t;q): Q x [0,1] - R
- {c(y (x.9))+ grn} =

%(q){ﬁ("'(x’“q))+ }

N (I/I (x,t;q))+ g(x,t)

which  satisfies

(6)

where g [0, 1] is an embedding parameter, #{g) is a

nonzero auxiliary function for g # 0, 70)=0. Eq

(6) is called optimal homotopy equation. Clearly, we
have:

g=0=3(y(x,60),0)= £(y(x.t:0) +g(x.t)=0, (7)
g=1= 7{(1// (x,t;l),l)

. ®)
_ H(l){c(w(x,t,q)w }: N
Ny (x,1:9)) + g(x,0)

Clearly, when ¢=0 and g=1 it holds that
l//(x,t; 0) =1, (x,t) and l//(x,t;l) =u (x,t)
respectively. Thus, as ¢ varies from 0tol, the
solution l//(x,t;q) approaches from u,(x,f) to
u(x,t), where u,(x,?) is obtained from Eq (3) for
q=0

£(ug(e.0))+ g(x.) =0, B(ug.0uq/0)=0. )
Next, we choose auxiliary function #H (q) in the
(10)

Here C,,C, ... are constants to be determined later.

form H(q) =qC, JrqzC2 +...

To get an approximate solution, we expand

l//(x, t;q, Ci) in Taylor’s series about ¢ in the

following manner,

v (x,t;q,Cl-) =uq (x,t)+ kzzluk (x,[;cl,)qk, (11)
i=1,2,..

Substituting Eq. (10) into Eq. (4) and equating the

coefficient of like the powers of ¢, we obtain Zeroth

order problem, given by Eq. (6), the first and second
order problems are given by Egs. (11-12)
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respectively and the general governing equations for
u, (x,?) are given by Eq. (13):
£(u,(x,0) = Oy (o (1), B(wy,0u /0r) =0(12)
£(uy (x, 1)) = £ (1, (x,0))= Cy Wy (1, (x,0)) +
C1 |:£(u1 (x,1))+ } (13)
W, (1 (x, 0,0, (x,1))
B(uy,0u, [01) =0
£y (x,0)) = £ (0, (x,0))=

L(uk_i(x,t))
k-1 uy(x,1), (14)
o (up(x,0)+ 2 €,
i=1 AN | u(x,0),
u,_(x,1)
® (., 0u, /0t) = 0. k=2,3,..,

where Ny (”0 (x,0), uy (x,0),..., Uy _; (x, t)) is the

i

coefficient  of qk_ in the expansion of
N (l// (x, t q)) about the embedding parameter g.
W(t//(x, t;q, Cl-)) =N, (uo (x,t)) +
‘ 15)

2N, (uo,ul,uz,...,uk)q .
k=1

Here u#, for k>0 are set of linear equations with

the linear boundary conditions, which can be easily
solved.
The convergence of the series in Eq. (10) depends

upon the auxiliary constants C|,C,,... . If it is
convergent atg = 1, one has:
zl(x,t;Cl.):uO(x,t)+ 2u, (x,t;Cl.). (16)
k>l

Substituting Eq. (15) into Eq. (1), it results in the
following expression for residual:

R (x,1C, ) = L(@(x,1C))) + g(x,0) + N (ii(x, 1;C, ). (17)
If R(x,#;C;) =0, then it (x,;C; ) will be the exact

solution.

For computing the of
C.,i=L2,.,m, there are many methods like

Galerkin’s Method, Ritz Method, Least Squares
Method and Collocation Method to find the optimal

values of C,,i=12,..,m, One can apply the

auxiliary  constants,

Method of Least Squares as under:
t

HC) =] IR (x,t,C)dxdr,  (18)
0Q

where R is the residual,
R(act;Ci) = E(ﬂ(x,t;C,»))+g(x,t)+ﬁ\f(ﬂ(x,t;ci)) and
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VY
ac,  ac,

= =0.
ocC,

19

The constants C;can also be determined by another

method as under:

R (h:C;)=® (hy;C;)=..=® (h,:C;)=0, (20)
i=1,2,...,m.

at any time ¢ , where 4, € Q .The convergence,

depends upon constants C;, C,,..., can be optimally
identified and minimized by Eq. (18).

3. Application of OHAM for (EWW) Equation.
Consider the (EWW) equation of the form (1)
3
ou(x,t) Fux o) Ou(x,t) _ 0 ugx,t) 0> (21)
ot Ox ox " ot
Subject to constant initial condition

x—lS)’ (22)

u(x,0) = 3sec h2 (

with exact solution given by

x—15-1¢
u(x,t) = 3sech2(T), (23)
Zeroth Order Problem
Ouy (x,1)
M
ot
Its solution is
u,(x,t) =3sech’(0.5(x —15). (24)
First Order Problem
Ou,(x,t) auo(x,t)_
o) (25)
C]uo(x,t)auo(x’t)-# ] 63u07(x,t):0A
ox ox 0t
u, (x,0) = 0.
Its solution is
u, (x,4,C,) = —9C, tsech® (0.5(x - 15))
tanh(0.5(x — 15)). (26)
Second Order Problem
Ou,(x,t) _a+cy) Ou,(x,t) B
ot
duy (x,1) 0%u, (x,1)
c Jt 0 C 0 _
Mo () T G o
C2 Ougy(x,t) _ Couy (1) Ougy(x,t) B
ot ox
du, (x,1) 8%u, (x,1)
Cyug(x,1) lﬁx +C, 6;2& = 0.
u, (x,O) =0 27

Its solution is
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Uy (x,1,C,) = -6.751C," sec h* (7.5~ 0.5x)
—9C,tsech* (7.5 — 0.5x)tanh(0.5(x — 15))
~9¢, sech * (7.5 - 0.5x)tanh(0.5(x — 15))
~9C,sech* (7.5 — 0.5x)tanh(0.5(x — 15))
~31.5C, sech® (7.5 — 0.5x)tanh > (0.5(x — 15))

+36C, tsech* (7.5 — 0.5x)tanh > (0.5(x — 15)). 28)
Third Order Problem

0 N 0 N 0 N
o) oy 22D oy 2ot
ot ot ox

3
0 Jt 0 ,t 0 N
L, ”Oz(x LT 1G22 RPN G}
ox ot ot Ox
Bu, (x,t %u, (x,t du, (x,t
— Coug(5,0) uy(x )+C2 ulz(x )_C2 uy(x,t)
ox Ox 0t ot
Oug (x,1) 0 Jt
— Cuy(xat)—2 = Cuy (rypy 2te)
x ox
0 ,t o%u x,t
Coug (6,0 2200 o 22( ) _o.
ox ox~ ot
u3(x,0):0 (29)

Its solution usz (x,¢,C,,C,,C;)is obtained in the

same manner. The third order approximate solution is
of the form.

zi(x,t,Cl,Cz): u, (x,t)Jrul (X,Z,Cl)+
u, (x,6,C,.C,)+u, (x,1,C,,C,.C.)

(30)

For the calculations of the constants C,,C, and C;

using the Method Least Squares we have computed
that

C = -2.6832331347988335x 10,
C,=3917.7906@532371, and
C, =-32847.814'b37734. 31)

The 3™ order OHAM solution yields very
encouraging results after comparing with 3™ order
NIM andADM solution [18].

Table 1.1: Comparison between the absolute error of
the solution of EWW equation by He’s variational
iteration method (VIM) and Adomian decomposition
methods (ADM) and optimal homotopy asymptotic
method (OHAM) at various values of t and = 0.

t | VIM ADM OHAM
0.01 | 3.668x107 | 3.668<10° | 3.33195x10~
0.02 | 7.333x107 | 7.334x10° | 6.66023x10~
0.03 | 1.099x10% | 1.099x10% | 9.98485x10”
0.04 | 1.465x10° | 1.465x10% | 1.33058x10°
0.05 | 1.830x10° | 1.830x10° | 1.66231x107
0.1 | 3.652x10° | 3.652x10% | 3.31549x10®

lifesciencej@gmail.com




Life Science Journal 2012;9(4)

http://www.lifesciencesite.com

Table 1.2:Comparison between the absolute error of
the solution of EWW equation by He’s variational
iteration method (VIM) and Adomian decomposition
methods (ADM) and optimal homotopy asymptotic
method (OHAM) at various values of t and x = 5

Table 1.6: Comparison between the absolute error of
the solution of EWW equation by He’s variational
iteration method (VIM) and Adomian decomposition
methods (ADM) and optimal homotopy asymptotic
method (OHAM) at various values of t and x = 15

t | VIM ADM OHAM t NIM ADM OHAM

0.01 | 5.382x107 5.429x107 | 5.32925x107 0.01 | 5.387x107 | 5.434x10” 5.42223x107

0.02 | 1.075x10° 1.085x10° | 1.06531x10° 0.02 | 1.078x10° 1.087x10° 1.08499x10°

o e 0.04 | 2.158x10° | 2.177x10° | 2.17216x10°

01 135357%10° 5205x10° | 5831325107 0.05 | 2.699x10° [ 2.722x10° | 2.71657x10°
0.1 |5.412x10° | 5.459x10° 5.44683x10°

Table 1.3: Comparison between the absolute error of
the solution of EWW equation by He’s variational
iteration method (VIM) and Adomian decomposition
methods (ADM) and optimal homotopy asymptotic
method (OHAM) at various values of t and x = 10

t [ NIM ADM OHAM

0.01 | 3.611x10° | 4.852x10° | 2.21357x107
0.02 | 7.228x10° | 9.698x10° | 4.43255x107
0.03 | 1.085x10™" | 1.453x10" | 6.65695x107
0.04 | 1.448x10™" | 1.936x10" | 8.88676x107
0.05 | 1.811x107 | 2.418x10™ 1.1122x10*
0.1 | 3.637x107 | 4.819x10" | 2.23787x10™

Table 1.4: Comparison between the absolute error of
the solution of EWW equation by He’s variational
iteration method (VIM) and Adomian decomposition
methods (ADM) and optimal homotopy asymptotic
method (OHAM) at various values of t and x = 15

t | NIM ADM OHAM

0.01 | 5.137x10° | 6.000x10° | 3.03829x107
0.02 | 2.055x10° | 2.400x10° | 1.21531x10°
0.03 | 4.623x10° | 5.400x10° | 2.73445x10°
0.04 | 8.220x10° | 9.600x10° | 4.86123x10°
0.05 | 1.284x10" | 1.500x10" | 7.59564x10°
0.1 | 5.137x107 | 6.000x10* | 3.03816x10”

Table 1.5:Comparison between the absolute error of
the solution of EWW equation by He’s variational
iteration method (VIM) and Adomian decomposition
methods (ADM) and optimal homotopy asymptotic
method (OHAM) at various values of t and x = 20

t NIM ADM OHAM

0.01 | 3.605x10” | 4.860x10° | 2.05582x107
0.02 | 7.205x10° | 9.728x107 | 4.11931x10”
0.03 | 1.080x107 | 1.460x10" | 6.19047x107
0.04 | 1.438x10™ | 1.948x107 | 8.26931x10”
0.05 | 1.797x10™ | 2.437x10" | 1.03558x10™
0.1 | 3.580x107 | 4.894x10" | 2.09041x10"
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4. Application of OHAM for Burger Equation.
Let us consider Burger Equation of the form (2).

ou(x,t)y 5 ou(x,t) 0u(x,t)
—+a - =

u (x,t) 5 0 (32
ot Ox Ox
With initial condition given by
-ad
4(x,0) = 0.5+ 0.5 tanh(————x)  (33)
2(5 +1)

Casel: whena=1andé=1
For o =1and d =1 the above equation takes the
form

du(x,t) ou(x,t) 0 u(x,t)
+u(x,t) - —=0
ot 0ox ox (34)
Subject to constant initial condition
u(x,0) = 0.5 — 0.5 tanh(0.25x) (35)

The exact solution of equation (24) with given
condition is given by

u(x,t)=0.5-0.5tanh[ 0.25(x — 0.5¢)] , (36)
following the basic idea of OHAM presented in

preceding Section we start with
0p(x,1,9)
L(g(x,t,9)) = ——, (37)
ot
2
ou(x,t,q) 0~ u(x,t,q)
N(¢(x; ta Q)) = u(xa t) - 2 . (38)
x ox
The initial condition is:
#(x,0,¢) = 0.5 — 0.5 tanh[ 0.25(x — 0.5)].  (39)
Zeroth Order Problem
0 ,t
o
ot
Its solution is
uy(x,0) = 0.5-0.5 tanh(0.25x). (40)

First Order Problem
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6ul(x,t)
ot

_d+c)) Ouy(x,1) ~

2
Ou, (x,t 0 up(x,1)
0(%.1) +C, 0 > =0
ox ox
u, (x,0) = 0.
Its solution is
u, (x,1,C,) = —1(0.0625C, sech” (0.25x)). (42)
Second Order Problem
Ou, (x,1) _(+Cy) Ou, (x,t) ~ Cyug(x.1) Ouy(x,t)

Ot t Oox

Ciuy(x,1)

(41)

62u0(x,t) Ouy(x,1)
-C,
2
Ox

0 t
+C, Oty (x,1)

= Ciuy(x,1)

ot ox

ouy(v.t) . 0wy (x0)
—Cluo(x,t) +C 5 =0.
Ox Ox

U, (x, 0) =0
Its solution is
u,(x,t,C) = ((-0.0625C1 (1+C,)-0.0625C,)

(43)

tsech” (0.25x) +sech’ (0.25x)
(0.00195313C, " ¢* sinh(0.75x)) + (44)
sec h* (0.25x)(0.00195313

C,’#* tanh(0.75x))).
Third Order Problem

Ouy(x,t) e )Guz(x,t) .
1

ot ot
Ou,(x,t o%u x,t
o) (o Pupen)

ox ox
0 N 0 N
C, —uo(x )—Czul(x,t)—uo(x )_
ot ox

oup(x,1) 9%u (x,1)
+C, T~
X Ox
Ou, (x,1)

0 t
c, __Cluz(x,t)M_
ot Ox

Ouy (x,1) o%u x,t
oy (x, 1) ———+C, 0(2 ) _o
ox ox

Usy (x,()) =0

Cyuy(x,1)

Cyuy(x,1)

(45)

Its solution is
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1 2
WZSCC h=(0.25x)

(-0.0625C, -0.0625C; + C,(-0.0625+ C, (-0.125 -

u3(x717C]7C27C3) =(

0.0156257) +C, (-0.125 - 0.0156251) - 0.000651042C,”
(5.0718+ 1) (18.9282 + 1)) + ((288C, +288C, +
C, (288+576C, +C, (576 - 24) - 24C, ¢ -

(46)

3C,° (-6.58301+ 1) (14.583+ £) cosh(0.25 x) +
(-96C5 -96C; +C, (96 -192C, +C, (-192-241)

-24C,1 +5C,” (7396 + 1) (2.596 + 1)) sinh(0.25 x))

-24C,t +5C, (-7.396 + 1) (2.596 + 1)) sinh(0.25 x)
(-0.000651042 cosh(0.75 x) - 0.000651042 sinh(0.75 x)))).
Adding equations (40, 42, 44, 46) we obtain:
ﬁ(x,t,Cl,C2)=u0(x,t)+ul(x,t,C1)+ (47)
u, (x,t,Cl,Cz) +uy (x,t,Cl,Cz,C3)

For the calculations of the constants Cl , C2 and C3

using the Method Least Squares we have computed
that
C, = -1.0000840 70827354,

C, = 9.46571385 1467995 x 10, and

C, =-1.98940934 674601 x 10"

Putting the values of these constants into equation
(34) the third order approximate solution using of
OHAM is

uy(x,1) = (0.5 - 5.26078452 47854 x 10

1

1+ eO.5x)z

£sech 2 (0.25x) +

(6.3600904 15451543 x 107 +

(1.3153067 008227217 x 107
+0.00065120 5881306229 21¢) ¢ +

(1.2720180 853076355 x 10~° -
0.00260482 3525224917 ) cosh(0.5 x) +
(63600904 2653818 x 10~ +

(-1.315306 7008227217 x 107 +
0.00065120 5881306229 21) 1) cosh( x)
+(1.2720180 853076355 x10™° -
0.00260482 3525224917 ¢ ) sinh(0.5 x)
+(6.3600904 2653818 x 10™° +
(-1.315306 7008227217 x 10~ +
0.00065120 5881306229 2¢) t)sinh( x) - (38)
0.5 tanh(0.25 x) + 0.00781381 3661895406 ¢

sech (0.25 x) tanh(0.25 x) + sech 2 (0.25x)
(0.0625052 5442670962 t)).
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The 3™ order OHAM solution yields very
encouraging results after comparing with 4™ order
ADM solution [16]

Table 2.1: Comparison of absolute errors of 3" order
OHAM solution and 4™ order ADM solution for
Burger equation for x = 0.1 and t € [0, 2]

t Exact Absolute Error | Absolute Error
solution ADM OHAM

0.5 ] 0.518741 | 6.34216 x10®° | 5.32631x10°

1.0 | 0.549834 | 2.02886 x10° | 7.98928x10°

2.0 | 0.610639 | 6.42801x10” 3.2441x107

Table 2:Comparison of absolute errors of 3 order
OHAM solution and 4™ order ADM solution for
Burger equation for x = 0.5 and t € [0, 2]

t Exact Absolute Error Absolute
solution ADM Error OHAM
0.5 | 0.468791 | 5.66705x10% | 5.82744x10°
1.0 | 0.50000 1.8471x10° | 3.89112x10°
20 [ 0562177 | 6.06928x10° | 7.40943x107

Table 2.3 Absolute errors of 3™ order OHAM
solution for wvarious values of x and ¢t =
0.003and t = 0.1

x Absolute Error for Absolute Error for
¢ =0.003 t=0.1

-4 7.88258x10™"° 3.00377x107°

2 8.54872x107"° 2.023x10”

0 4.55191x10™" 1.02224x10™°

2 1.11022x107" 1.98526%10”

4 9.57567x107"° 3.6574x10™"°

Table 2.4 Absolute errors of 3™ order OHAM
solution for various values of x and t = 0.5and t =
0.1

x Absolute Error for

Absolute Error for

t=0.5 t=1
4 1.86591x107 2.68667x10°
2 1.2447x10° 1.96202x107

2.10382x10°
2.0391x107
4.14971x10°

7.37402x107
1.26475%10°
2.37125%107

L LNE=

Case2: whena=1and d =2

For o = 1 and 8 = 22 equation (2) takes the form
ou(x,t ou(x,t o%u x,t

(0 2 2 Sueen)

ot ox ox (34)

Subject to constant initial condition

u(x,0) = 0.5 — 0.5 tanh(~)
3 (33)

http://www.lifesciencesite.com

The exact solution of equation (24) with given
condition is given by

u(x,t)=0.5-0.5 tanh[i(x —%t)] , (36)

Using same lines as above the third order
approximate solution using OHAM is obtained and

absolute errors for various values of xand t are given
in table (2.5-2.6).

Table 2.5: Absolute error of the solution of Burger
equation optimal homotopy asymptotic method
(OHAM) at x = 0.1 and various values of t

t Exact OHAM Absolute error
solution solution

0.1 | 0.699207 | 0.699207 | 1.02602x10""
0.2 | 0.703168 | 0.703168 | 3.52315x10”
0.3 | 0.707107 | 0.707107 | 2.39034x10*
0.4 | 0.711024 | 0.711024 | 8.5422x10°
0.5 | 0.714919 | 0.714919 | 2.23819x10”
0.6 | 0.718791 | 0.718791 | 4.86729x10
0.7 | 0.722639 | 0.722638 | 9.34107x10”
0.8 | 0.726464 | 0.726462 1.63865x10°
0.9 | 0.730263 | 0.73026 2.68617x10°
1.0 | 0.734037 | 0.734033 | 4.17601x10°

Table 2.6: Absolute error of the solution of Burger
equation optimal homotopy asymptotic method
(OHAM) at x = 0.5 and various values of t

t Exact OHAM Absolute
solution solution error
0.1 | 0.650264 | 0.650264 3.16105x10™°
0.2 | 0.654428 | 0.654428 1.15677x107
0.3 | 0.658578 | 0.658578 7.62659x107"°
0.4 [ 0.662715 | 0.662715 1.33499x107
0.5 | 0.666837 | 0.666837 4.97044x10®
0.6 | 0.670944 | 0.670944 1.28683x10”
0.7 | 0.675035 | 0.675035 2.7546x107
0.8 | 0.679109 | 0.679109 5.22082x107
0.9 | 0.683166 | 0.683165 | 9.08017x107
1.0 | 0.687205 | 0.687204 | 1.48069x10°
Conclusion

In this paper, the OHAM has been successfully
implemented for the approximate solution of Burger
and EWW Equations. For EWW equation the results
obtained by OHAM are very consistent in
comparison with ADM and VIM. For Burger
equationsthe third order approximate solutions results
of proposed method are very encouraging and agrees
to the fourth order approximate solution by ADM.
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