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Abstract: The aim of this article is to measuring the blood flow, when they pass through obstructed blood vessels. 
In many medical arteries the amount of the blood flow inside canals and obstructed vessel is important and reduces 
due to the arteries. However, the problem with measurements in such circumstances lies in the lack of precise and 
appropriate experimental data needed for the calculation of the blood passes through the vessel. To overcome the 
shortcoming, hence, the effect of the most common type orifices, i.e., Square edge Orifice (D & D/2 taps), were put 
to the test, by simulating the flow with the use of CFD methods and Fluent 6.0 software, for 0.25≤β≤0.5 and 
10,000≤ ReD≤200,000, fixed temperature of 300K. Therefore, relations were obtained for blood as the 
incompressible fluid.  
[Kharaji M. Gh., Dadjoo F., Alirezaei Y., Falavand A., Langari A. A simple model to compute the blood flows 
through obstructed blood vessels. Life Sci J 2012;9(4):1782-1788] (ISSN:1097-8135). 
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1. Introduction 

Disruption of normal blood flow to the 
heart, lung, and brain due to thrombosis is one of the 
leading causes of death and long-term adult disability 
in the developing world. Today, patients with 
pulmonary embolism, strokes, heart attacks and other 
types of acute thrombosis leading to near-complete 
vascular occlusion are most frequently treated in an 
acute care hospital setting using systemic dosages of 
powerful clot-dissolving drugs [1].  

  The obstructed part of the vessel can be 
simulated through an orifice. Orifice can be 
simulated as a plate with a hole in the middle which 
is vertical to the fluid. When the fluid reaches the 
orifice with a constant velocity and pressure, it has to 
be contracted in order to pass through the orifice 
hole. The maximum point of this contraction is called 
the “Vena Contracta (VC)” point which is actually 
placed after the orifice. 

The pressure and velocity of the blood flow 
will change, while passing through the V.C. point and 
after that the fluid will once again expand and the 
pressure and velocity will again change.  

By calculating the differences in pressure 
and velocity, we can calculate the flow of fluid with 
the help of Bernoulli equation. The sizing error factor 
is assigned by the ANSA/API 2530 standard. 

The contraction form which happens after 
the orifice will make the results of the calculations 
using the Bernoulli equation, different to the ones 
determined by experiments; therefore a correction 

factor must be determined in order to lower the error. 
This factor is called the “discharge coefficient” 
factor, and is usually calculated experimentally for 
different orifices with different β ratios. 

 
Figure 1. Blood flow through a obstructed vessel. 

 

 
Figure 2. Square edge concentric orifice, with sizing 

parameters  
 

The results of these calculations are 
available in reference books as charts, but it is not 
general and only available for particular conditions. 
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The biggest problem is that these experiments have 
been widely done for compressible and 
incompressible fluids, and there is not much data 
available for two phase fluids and this lack of 
information has caused many problems. 

Therefore, the aim of this project is to 
determine a new formula which can predict the 
discharge coefficient for the incompressible fluids at 
the β ratios between 0.25 and 0.5, with a standard 
error of 4-5 percent. After that some relations will be 
given for compressible and also two phase fluids 
which are widely used in the oil and gas industries. 
We hope to decrease the lack of information in this 
part and help them. 

 
2 .Theoretical basis 

To control industrial processes, it is essential 
to know the amount of material entering and leaving 
the process. A few types of flow meters measure the 
mass flow rate directly, but the majority measures the 
volumetric flow rate or the average fluid velocity, 
from which the volumetric flow rate can be 
calculated. Most meters operate on all the fluid in the 
pipe or channel and are know as full-bore meters. 
Others, called insertion meters, measure the flow 
rate, or more commonly the fluid velocity, at one 
point only. The total flow rate, however, can often be 
inferred with considerable accuracy from this single-
point measurement.  

The most common types of full-bore meters 
are Venturi and Orifice meters.  

A Venturi meter is a short conical inlet 
section leads to a throat section, then to a long 
discharge cone. Although Venturi meters can be 
applied to the measurement of gas flow rates, they 
are most commonly used with liquids, especially 
large flows of liquids where, because of the large 
pressure recovery, a Venturi requires less power than 
other types of meters.  

The Venturi meter has certain practical 
disadvantages for ordinary plant practice. It is 
expensive, it occupies considerable space, and it’s 
ratio of throat diameter to pipe diameter can not be 
changed. For a given meter and definite manometer 
system, the maximum measurable flow rate is fixed, 
so if the flow range is changed, the throat diameter 
may be too large to give an accurate reading or too 
small to accommodate the next maximum flow rate. 
The orifice meter meets these objections to the 
Venturi but at the price of large power consumption. 

In 2-in (50 mm) and larger line sizes the 
concentric orifice (Figure 2) is the most common 
restriction for clean liquids, gases, and low-velocity 
vapor (steam) flows. It is a sharp, square-edge hole 
bored in a flat, thin pate. The ratio of opening 
diameter d to pipe diameter D defines the β ratio. For 

most applications this ratio should be between 0.2 
and 0.75, depending on desired differential; a high β 
orifice produces less differential for the same flow 
rate than a small β orifice. 

Depending on upstream and downstream tap 
locations, the flow meter is referred to as a corner 
tap, a flange tap, a D-and-D/2 tap, a pipe tap (2.5 D 
and 8D), or a vena contracta tap orifice flow meter. 
Vena contracta taps have been replaced by D–and-
D/2 taps because future changes in orifice bore 
require no tap relocation. 

Several standards [2,3] have been written to 
detail installation requirements and construction and 
to estimate the overall uncertainty (accuracy) [3]. 

The maximum pipe Reynolds number may 
be as high as 3.3×107. However, a discharge 
coefficient rise of up to 1.56 percent for a 0.71 β ratio 
orifice has been reported by Jones at bore Reynolds 
number greater than 8×106. This rise, may be 
explained by the work of Grose on the inviscid (zero 
viscosity) contraction coefficient change with β ratio. 

The basic equation for an orifice meter is 
obtained by writing the Euler equation for 
incompressible fluids across the upstream [4]: 

x
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Since flow is steady, the left-hand term in 
equation (1) vanishes. There is no variation in fluid 
velocity across the cross section, so the flow is 
unidirectional and the velocity u is a function only of 
x and since gravity acts in the negative x direction, 

gg x  . The partial differentials become total 

differentials. Hence, from equation (1), 

0
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 ug
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u
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ud
u 


 (4) 

Thus for steady flow it is possible to divide 
through by the velocity u. by doing this and also 
dividing through by   equation (2) becomes:  

0
1)2/( 2


dx

dZ
g

dx

dp

dx

ud


  (5) 

In a straight horizontal tube, in 
consequences, there is no pressure drop in steady 
constant-velocity potential flow. Integrating equation 
(3) will give: 
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Equation (4) is known as the Bernoulli 

equation without friction. 
Most fluid flow problems encountered in 

engineering involve streams that are influenced by 
solid boundaries and therefore contain boundary 
layers. This is especially true in the flow of fluids 
through pipes and other equipments, where the entire 
stream may be in boundary layer flow. 

To extend the Bernoulli equation to cover 
practical situations, two modifications are needed. 
The first, usually of minor importance, is a correction 
of the kinetic energy term for the variation of local 
velocity u with position in the boundary layer; the 
second, of major importance, is the correction of 
equation for the existence of fluid friction, which 
appears when ever a boundary layer forms. 

The term u2/2 in equation (4) is the kinetic 
energy of a unit mass of fluid all of which is flowing 
at the same velocity u. when the velocity varies 
across the stream cross section, the kinetic energy is 
found in the following manner. Consider an element 
of cross-sectional area dS. The mass flow rate 
through this is ρu.dS. Each and the energy flow rate 
through area dS carries kinetic energy in amount u2/2, 
and the energy flow rate through area dS is therefore: 

22
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Where 
.

kE represents the time rate of flow 

of kinetic energy. The total rate of flow of kinetic 
energy through the entire cross section S is, assuming 
constant density within the area S,  
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2.1 Kinetic energy correction factor 

It is convenient to eliminate the integral of 

equation (5) by a factor operating on 

2

2

V


 to give the 

correct value of the kinetic energy. This factor, called 
the kinetic energy correction factor, is denoted by  
and is defined by 
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2.2 Correction of Bernoulli equation for fluid 
friction 

Friction manifests itself by the 
disappearance of mechanical energy. In frictional 
flow the quantity 

gZ
up


2

2


    (11) 

Is not constant along streamline, as called 
for by equation (4), but always decreases in the 
direction of flow.  

For incompressible fluids, the Bernoulli 
equation is corrected for friction by adding a term to 
the right-hand side of equation (4). Thus, after 
introducing the kinetic energy correction factor, 
equation (4) becomes 
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If aV


 and bV


 are the average upstream 
and downstream velocities, respectively, and   is 

the density of the fluid, equation (7) becomes 
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If aV


 is eliminated from equations (8) and 
(9), the result is 
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Equation (10) applies strictly to the 
frictionless flow of noncompressible fluids. To 
calculate the mass flow rate 

AVQ
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      (16) 
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2.3 Correction to the theoretical equation: 

The theoretical flow equation calculates the 
true flow rate only when all the assumptions used to 
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develop it are valid. This is seldom the case, and the 
true flow rate is almost always less than the 
theoretically calculated value. 

How closely the true flow rate can be 
calculated depends almost entirely on the geometry 
of the contraction. For a venturi or flow nozzle, 
where the area reduction is gradual the agreement is 
within 1 to 3 percent. But for the square-edge orifice 
the abrupt area reduction places the minimum flow 
area downstream of the plated at the plane of the 
vena contracta. Since the diameter of the vena 
contracts (DVC) for an orifice cannot be measured, the 
theoretical equation includes the measured bore as 
the correlation diameter. Also, increased downstream 
turbulence results in an energy loss that is not 
accounted for by either Bernoulli’s equation or the 
thermodynamic steady flow energy equation. These 
two factors result in the true flow being 
approximately 60 percent of the theoretically 
calculated value. The location of the two measuring 
taps is also important because it establishes the 
measured differential.  

The theoretical equation is adjusted for these 
effects with two empirically determined corrections. 
The first is the discharge coefficient C, which 
corrects for velocity profile (Reynolds number), tap 
location, and contraction geometry; the second is an 
empirically derived net expansion-factor equation for 
orifice flow meters. 

 
2.4 Discharge Coefficient 

For a given primary element, the discharge 
coefficient is derived from laboratory data by rotating 
the true and theoretical flow rates. The true flow rate 
is determined by weighing or volumetric collection of 
the fluid over a measured time interval, and the 
theoretical flow rate is calculated with equation (11). 
The discharge coefficient is then defined as 

true flow rate

theoretical flow rate
C    (18) 

The discharge coefficient corrects the 
theoretical equation for the influences of velocity 
profile (Reynolds number), the assumption of no 
energy loss between taps, and pressure-tap location. 

In some flow equations, the discharge 
coefficient is combined with velocity of approach and 
redefined as the flow coefficient. For fixed geometry 
primary devices, to simplify the equation, or where 
primary elements are available in a limited range of 
sizes, the flow coefficient is used in place of the 
discharge coefficient. The flow coefficient is defined 
as 

EC
C

K 



41 

   (19) 

Where E is the velocity of approach factor 
[5]. 
2.5 Method of Presenting the Discharge 
Coefficient 

For all standardized primary elements, 
numerous test points have been used to develop an 
empirical equation that predicts the discharge 
coefficient from bore and pipe diameter 
measurements. The accuracy of these equations is 
usually acceptable, and a flow calibration is seldom 
performed. However, for Reynolds number, pipe 
size, etc., outside the specified range of the equation, 
a signature curve should be used to obtain the 
discharge coefficient. 

In the turbulent flow regime (ReD>4000), 
the discharge coefficient for all primary elements can 
be expressed with an equation of the general form 

n
D

b
CC

Re
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   (20) 

In which C  is the discharge coefficient at 

an infinite Reynolds number, and b is the Reynolds 
number correction term. 

Depending on the primary element, the 
infinite Reynolds number discharge coefficient may 
be a constant or a function of measured dimensions 
or tap location. The value of b may also be a function 
of dimensions, or it may be 0. The Reynolds number 
exponent n is constant and depending on the primary 
element. 

Therefore by taking in account the discharge 
coefficient factor, the equation (10) can be written as 


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1 4
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The small effects of kinetic energy factors 

ba  ,  are also taken into account in the 

definition 0C . 

3.  Simulation and numerical method 
Computational Fluid Dynamics (CFD) is 

one of the branches of fluid mechanics that uses 
numerical methods and algorithms to solve and 
analyze problems that involve fluid flows.  

The fundamental basis of any CFD problem 
is the Navier-Stokes equations, which define any 
single phase fluid flow. These equations can be 
simplified by removing terms describing viscosity to 
yield the Euler equations. Further simplification, by 
removing terms describing vorticity yields the Full 
Potential equations. Finally, these equations can be 
linearized to yield the Linearized Potential equations. 

The most fundamental consideration in CFD 
is how one treats a continuous fluid in a discretized 
fashion on a computer. One method is to discretize 
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the spatial domain into small cells to form a volume 
mesh or grid, and then apply a suitable algorithm to 
solve the equations of motion (Euler equations for 
inviscid and Navier-Stokes equations for viscid 
flow). In addition, such a mesh can be either irregular 
(for instance consisting of triangles in 2D, or 
pyramidal solids in 3D) or regular. 

In all of these approaches the same basic 
procedure is followed: 

1. The geometry (physical bounds) of the 
problem is defined. 

2. The volume occupied by the fluid is 
divided into discrete cells (the mesh). 

3. The physical modeling is defined - for 
example, the equations of motions + enthalpy + 
species conservation. 

4. Boundary conditions are defined. This 
involves specifying the fluid behavior and properties 
at the boundaries of the problem. For transient 
problems, the initial conditions are also defined. 

5. The equations are solved iteratively as a 
steady-state or transient. 

6. Analysis and visualization of the resulting 
solution. 

The model development and simulation 
were based on commercial CFD software, Fluent 6.0, 
and meshing software Gambit 2.0.  

The software code is based on the finite 
volume method on a collocated grid. 

Finite volume method is the "classical" or 
standard approach used most often in commercial 
software and research codes. The governing 
equations are solved on discrete control volumes. 
This integral approach yields a method that is 
inherently conservative (i.e., quantities such as 
density remain physically meaningful): 

 

  



0FdAQdV

t
  (22) 

Where Q is the vector of conserved 
variables, F is the vector of fluxes (Euler equations or 
Navier-Stokes equations), V is the cell volume, and A 
is the cell surface area [6]. 

The Fluent 6.0, which is a finite volume 
code, was used in velocity, pressure and vena 
contraction computations while Gambit 2.0 provided 
complete mesh flexibility in solving flow problems 
with both structured and unstructured meshes in this 
study. All functions required to compute a solution 
and display the result in Fluent software are 
accessible either through an interactive interface or 
by constructing user-defined-functions (UDS). 

The use of CFD simulation usually includes 
three steps: preprocessing, processing and post 
processing. In the preprocessing step, a specific 
system is identified. The geometry and material 

properties should be clearly defined. Meshing usually 
follows after geometry is determined. This is 
accomplished by dividing geometry into many small 
elements or volumes. Meshing is complicated work, 
as it is critical for both the accuracy of final result 
and the cost of numerical calculation. The setting of 
boundary conditions, initial conditions and 
convergence criteria are also completed in 
preprocessing stage. 

 
Figure 3. Overall pipe mesh 

 
In the processing stage, the interative 

calculations in each cell are carried out until 
convergence criteria are met. This calculation 
intensive process constitutes the core content of CFD 
application. After the completion of processing, the 
result can be evaluated either numerically or 
graphically. The graphical methods provide a more 
convenient way to evaluate the overall effect. This 
includes vector plot, contour plot, plot of scalar 
variables, etc. these visualization tools in post 
processing stage allows quick assessment and 
comparison of calculation results. 

The studied orifice plate is shown in figure 
2. The meshing work for the geometry of orifice plate 
and pipe was done with Gambit® 2.0. Altogether 
6358 nodes representing 6298 cells and 12655 faces 
were used for meshing. Grid refinement was 
performed according to the concentration gradient 
within the module geometry. 

For both single phase and two phase flow 
simulation, the flow is assumed to be turbulent and 

the k  turbulence model is employed. For two-
phase model the mixture 

Model is used, which is simplified 
multiphase model and can be used to model 
inhomogeneous multiphase flows where the phases 
move at different velocities or homogeneous 
multiphase flows with phases moving at same 
velocity. In the multiphase fluid, the fluid contains 90 
percent of Methane gas and 10 percent of water 
liquid. 

The distance before and after the orifice, in 
order to have a fully developed regime flow is 8D 
[7].  

The pressure was read before and after the 
orifice plate, in D and D/2 centimeters respectively, 
and the velocity was read at the center point of the 
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orifice. The fluids enter the pipe at different Reynolds 
numbers but at a constant temperature of 300 K, and 
the walls are assumed to be adiabatic, so they will 
have no affect on the temperature of the fluid. 
4. Results and discussion: 

Figure 3 shows the mesh of the 
computational domain of the overall pipe, and the 
orifice plate mesh is shown in Figure 4. 

 
Figure 4. Orifice plate mesh 

 
The results for different β ratios can be seen 

in the following tables and charts. We have to note 
that the results were compared by the data available 
in the “Flow measurement and instrumentation” 
handbook. 

 
Figure 5. Comparison between experimental and 
computational calculated discharge coefficient for β 
= 0.25. 

The results can be seen both as chart and 
table. The maximum error in this case is 5.012% that 
decreases while the Pipe’s Reynolds number 
increases and reaches to 4.784% which is absolutely 
acceptable.  

 

Table 1. Comparison between experimental and 
computational calculated discharge coefficient for β 
=0.25. 
ReD×10-3 C (Exp) C (CFD) Error % 
10 0.6005 0.6306 5.012 
15 0.5997 0.6295 4.969 
20 0.5991 0.6288 4.957 
30 0.5989 0.628 4.859 
45 0.5985 0.6275 4.859 
50 0.5983 0.62728 4.843 
60 0.5984 0.6272 4.812 
70 0.5983 0.6271 4.813 
80 0.5982 0.62695 4.806 
90 0.5981 0.6269 4.815 
100 0.598 0.6268 4.816 
200 0.5978 0.6264 4.784 

The formula calculated for this case is in the 
form of a MMF equation 


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 (23) 

With the use of this equation the discharge 
coefficient can be determined for any Reynolds 

number for example
31038.53  , which was not 

possible before this. 

 
Figure 6. Pressure profile by means of CFD for β= 

0.5 
The results can be seen both as chart and 

table. The maximum error in this case is 5.008% that 
decreases while the Pipe’s Reynolds number 
increases and reaches to 3.523% which is absolutely 
acceptable. 

 
Table 2. Comparison between experimental and 

computational calculated discharge coefficient for 
β=0.5. 

ReD×10-3 C (Exp) C (CFD) Error % 
10 0.619 0.65 5.00 
15 0.615 0.6445 4.79 
20 0.6125 0.6408 4.62 
30 0.61 0.6359 4.24 
45 0.6085 0.6327 3.97 
50 0.6078 0.6306 3.75 
60 0.607 0.6292 3.65 
70 0.6065 0.6286 3.64 
80 0.6062 0.6282 3.62 
90 0.606 0.6278 3.59 
100 0.6056 0.6275 3.61 
200 0.6045 0.6258 3.52 
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Figure 7. Velocity profile by means of CFD for β= 

0.5 

 

 
Figure 8. Comparison between experimental and 

computational calculated discharge coefficient for β= 
0.5. 

 
The formula derived for this case is again in 

the form of a MMF equation: 
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Now by the use of mathematical methods 
and neural networking, we can determine an equation 
that can be applied over the range of 0.25≤β≤0.5 and 
10,000≤ ReD≤200,000. 

 

4. .Re
[ ] 1

Re

0.62415685

0.30651715

0.67147866

0.86214300

d
D

d
D

a b e
C

b

a

b

e

d




  



 



  



  (25) 

The maximum error for equation 42 is 
assumed to be 7%. We have to note that the error will 
decrease while the Reynolds number increases. Using 

equation 42 for β= 0.35 as an example, will result as 
in given in table 3: 

 
Table 2. Comparison between the experimental and 

the determined discharge coefficient 
ReD×10-3 C (Exp) C (CFD) Error % 
10 0.606 0.633 4.45 
15 0.6041 0.6307 4.40 
20 0.6034 0.6287 4.19 
30 0.602 0.6264 4.05 
45 0.6018 0.6245 3.77 
50 0.6016 0.6241 3.74 
60 0.6015 0.6235 3.65 
70 0.6015 0.6230 3.57 
80 0.6013 0.6227 3.56 
90 0.6012 0.6224 3.52 
100 0.6008 0.6221 3.54 
200 0.600 0.6209 3.48 

 
5. Conclusion: 

The objective of this research was to 
simulate the blood flow over the range of 0.25≤β≤0.5 
and 10,000≤ ReD≤200,000. The correlation was 
achieved trough numerical methods using Fluent 6.0 
software and is expressed as a function of the pipe’s 
Reynolds number and the β ratio. As a result, each 
one of these non-ideal mechanisms can be analyzed 
independently from the influence of the other 
mechanisms.  
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