Life Science Journal 2012;9(4)

http://www.lifesciencesite.com

Some approximation theorems via o-convergence

Mustafa Obaid

Department of Mathematics, Faculty of Science, King Abdulaziz University,
P.O. Box 80111, Jeddah 21589, Saudi Arabia.

Abstract: The concept of o-convergence was introduced in [P. Schaefer, Proc. Amer. Math. Soc. 36(1972)104-110]
by using invariant mean.In this paper we apply this method to prove some Korovkin type approximation theorems.
[Mustafa Obaid. Some approximation theorems via o-convergence. Life Sci J 2012;9(4):1527-1530] (ISSN:1097-

8135). http://www.lifesciencesite.com. 231

Keywords and phrases: Invariant mean; g-convergence; Korovkin type approximation theorem.
AMS subject classification 2000: 41A10, 41A25, 41A36, 40A05, 40A3

1. Introduction and preliminaries

Let ¢ and ¢,, denote the spaces of all convergent and
bounded sequences, respectively, and note that
¢ C {,. In the theory of sequence spaces, a beautiful
application of the well known Hahn-Banach Extension
Theorem gave rise to the concept of the Banach limit.
That is, the lim functional defined on ¢ can be
extended to the whole of £, and this extended
functional is known as the Banach limit [2]. In 1948,
Lorentz [8] used this notion of a weak limit to define a
new type of convergence, known as the almost
convergence. Later on, Raimi [17] gave a slight
generalization of almost convergence and named it the
o-convergence. Before proceeding further, we should
recall some notations and basic definitions used in this
paper.

Let o be a mapping of the set of positive integers N
into itself. A continuous linear functional ¢ defined on
the space ¢, of all bounded sequences is called an
invariant mean (or a o-mean; cf. [17]) if it is non-

negative, normal and ¢ (x) = ¢ ((xa(n))).

A sequence x = Xx; is said to be g-convergent to the
number L if and only if all of its -means coincide
with L, i.e. ¢(x) = L for all ¢. A bounded sequence
x = x, is g-convergent (cf. [18]) to the number L if
and only if lim,,_,, t,,, = L uniformly in m, where
_ Xm + Xgem) T X52(m) T+t X
B pt+1
We denote the set of all o-convergent sequences by V
and in this case we write x;, = L(V,) and L is called
the o-limit of x. Note that a g-mean extends the limit
functional on c in the sense that ¢ =lim x for all
x € c if and only if o has no finite orbits (cf. [11, 12])
andccV, cd,.

t

pm

If o is a translation then the o-mean is called a
Banach limit and o -convergence is reduced to the
concept of almost convergence introduced by Lorentz

8].
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For o-convergence of double sequences, we refer
the reader to [3, 12, 13, 14].

If m = 1 then we get (C,1); convergence, and in
this case we write x, = €(C,1); where £ = (C,1)-
lim x.

Remark 1.1. Note that:
(a) a convergent sequence is also o-convergent;
(b) a o -convergent sequence implies
convergent.
Example 1.2. The sequence z = (z,,) defined as
_ {1 if n is odd,

" 0 if nis even
is o -convergent to 1/2(for a(n) =n+ 1) but not
convergent.

Let C[a,b] be the space of all functions f
continuous on [a,b]. We know that C[a,b] is a

€1

Banach space with norm
fl. =sup,_, ., If(I, feCla, b]. Suppose that
T,:C[a,b] = Cla, b] We write T,f(x) for

T,(f (t),x) and we say that T is a positive operator if
T(f,x)=0forall f(x) = 0.

The classical Korovkin approximation theorem
states as follows [6, 7]:

Let T,, be a sequence of positive linear operators
from C[a,b] into C[a,b] and lim,||T,(f;,x —
fi (|, =0, fori = 0,1,2, where fo(x) = 1,fi(x) =x
and f,(x) = x2. Then lim,||T,f(x) — f()Il, =0,
for all f € C[a,b].

Quite recently, such type of approximation theorems
for functions of single variables were proved in [5, 9,
10, 15, 16] and for functions of two variables in [1, 4]
by wusing statistical convergence and almost
convergence. In this paper, we use the notion of o-
convergence to prove Korovkin type approximation
theorems.

2. Korovkin type approximation theorem



Life Science Journal 2012;9(4)

http://www.lifesciencesite.com

The following is the V-version of the classical
Korovkin approximation theorem followed by an
example to show its importance.\newline

Theorem 2.1. Let (T), be a sequence of positive linear

operators from C[a, b] into C[a, b] and D,, ,,(f,x) =

%Zzzl T sy f (%) satistying the following conditions
lim [, (1,2 — 1],

=0 uniformlyinn, (2.1.1)
},i_r,g”Dn,p(t' x) — x||DD

=0 uniformlyinn, (2.1.2)
li_rg”Dn,p(tz,x) - x2||DD
’ =0 uniformlyinn, (2.1.3)

Then for any function fe C[a, b] bounded on the
whole real line, we have

o- lim||IT;.(f, x) = f()ll.. = 0 ie,
lim||D,,,(f,x) = f(x)|| =0 uniformlyinn,
p—ow© 0

Proof. Since fe C[a, b] and f is bounded on the real
line, we have
lf el <M,
Therefore,
lf@®) —f)| <2M,—0o<t,x <o (2.1.4)

Also we have that f is continuous on [a, b],
ie.,

lf(&)—f)l <ec, Viit—x| <68 (2.1.5)
Using (2.1.4), (2.1.5) and putting  (t) = (t — x)?,
we get

2M
If® —f@l <e+—z¥vit—x| <6,

This means

—o0 < x < 00.

2M 2M
—G—Fz,b<f(t)—f(x) < 6+Fz,b.

Now, we operating
T yk(yy(1,x) for all n to this inequality since
T sk (f, %) is monotone and linear. Hence

T sk (1, %) (—e — 26—1\241/})

< Tory (LO(FO) = F()

2M
< To.k(n)(l, x) (E + FIIJ.)

Note that x is fixed and so f(x) is constant number.
Therefore

2M
—ETo_k(n) (1, X) - FTO'k(n)(lp’ X)
< To_k(n)(f, X) - f(X)TGk(n) (1, X)

2M
< GTGk(n)(l, x) + FTO'k(n)(lp’ x) (2.1.6)
But

1528

Tak(n) (f' x) - f(X) = To'k(n) (f’ X)
—f QAT gk (1, %) + FOOT gk (1, ) — f(x)
= [T iy (F, %) = FCOT iy (1, )]
+f O[T iy (Lx) — 1] (2.1.7)

Using (2.1.6) and (2.1.7), we have
T sy (s X) = (%) < €T gk, (1, %)
+ 22 T gy 0, 20) + F O (T ey (1, %) = 1)(2.1.8)
Let us estimate T ;k,,) (1), x)
T gk )W, X) = T gy (8 — )%, %)
= T gk (E* = 2tx + X%, x)
= T gy (6%, 0) + 2XT gk (6, %) + X2 T sk () (1, %)
= [T gy (6%, %) = X] = 2 [Ty (8, X) — x]
+ x2[T ey (1,0) — 1].
Using (2.1.8), we obtain
T oy (s X) = (%) < €T gk, (1, %)
+26—1\;I{[T0k(n)(t2,x) —x?] + Zx[TGk(n)(t, x) — x|
+ x2[T ey (1,6) — 1]}
+ FCO(T iy (1, %) — 1)
= e[Tak(n)(l,x) -1]+e
2M
+F{[To.k(n)(t2,x) — x2] + 2x(T iy (£, %) — x]
+ x2[T ey (1,%) — 1]}
+ FCO(T iy (1, 1) — 1).
Since € is arbitrary, we can write
Tok(n) (f' x) - f(X)
< €[T ki (1,%) — 1]
+ 26—1\2/1{[T0k(n) (t%,x)x?]
+ 2X([T iy (£, %) — x]
+ x2[T ey (1,0) — 1]}
+ F OO (T ki (1,%) — 1).
Similarly
Dy, (f,x) — f(x)
<e¢[D,,(1,x) —1]
+ [Pyt — 7]
+ Zx[Tok(n) (t,x) — x|
+ x2[D,,,(1,x) — 1]}
+ £ () (Dnp(L,%) — %),

Mb? )
+M

62

and therefore

2
1,2 = FGO, < ( +

4Mb
[1Dnp (1,20 = 1|+ -7 [[Dnp (&) = x|

2M
+ 57 ||Dn'p (t?,x) — x? ||DD
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Letting p — o and using (2.1.1), (2.1.2), (2.1.3), we
get
lim||D,,,(f,x) — f(x)|| =0 uniformly inn
p—o0 0

This completes the proof of the theorem.

In the following we give an example of a sequence
of positive linear operators satisfying the conditions of
Theorem 2.1 but does not satisfy the conditions of the
Korovkin theorem.

Example 2.2.. Consider the sequence of classical
Bernstein polynomials

baf0) = ) f (S) (F) e -0

k=0
0<x<1
Let the sequence (P,) be defined by B,: C[0,1] —
C[0,1] with B,(f(,x) = (1 + z,B,(f, x), where z, is
defined as in Example 1.2. Then
x — x?
B,(1,x) = 1,B,(t,x) = x,B, (t%,x) = x*> + —
and the sequence (P,) satisfies the conditions (2.1.1)-
(2.1.3). Hence we have
o-lim ||B,(f, %) — f(x) = f(0)ll,, = 0.
On the other hand, we get $B,(f,0) = (1 + z,)f(0),
since B, (f,0) = f(0), and hence
”Pn(f,X) - f(x)”oo = |Pn(f' O)l = anf(o)l
We see that (P,) does not satisfy the classical
Korovkin theorem, since lim sup,_, z,, does not
exists.
Now we present a slight general results.

Theorem 2.3. Let T, be a sequence of positive linear
operators on C[a, b] such that
m|IT, 4y = Tl = 0 (23.1)
If
o-lim||T,, (t¥ — x) — x”l,,
" =0 (v=0,1,2). (2.3.2)
Then for any function f € C[a, b] bounded on the
real line, we have
Hm|IT, (f, x) = f(Oll, =0 (23.3)
Proof. From Theorem 2.1, we have that if (2.3.2)
holds then
lim||D,,,,(f, ) = GO,

= 0, uniformly in n
We have the following inequality

”Tn(f,X) - f(x)”oo < ”Dn,p(f' X) - f(x)”w

(2.3.4)

1 n+p-1 k
=3 ( >, —Tl_1||w>
p k=n+1 \l=n+1
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< [IDnp (f, ) = F@I
+2=

~{supl,

kzn

- Tk—l”w} (2.3.5)

\
Hence using (2.3.1) and (2.3.4), we get (2.3.3).
This completes the proof of the theorem.

Remark 2.4. We know that a-convergence implies
(C, 1) convergence. This motivates us to further
generalize our main result by weakening the
hypothesis or to add some condition to get more
general result.

Theorem 2.5. Let (T, be a sequence of positive linear
operators on C[a, b] such that
(C’ 1) - hm”Tn(tV’ x) - xV”oo
nzp

=0 (v =0,12) (2.5.1)

and

lim{s up2||s‘n+p_1(f,x) - fn—10c'x)|| }
p nzp P *

=0 (2.5.2)
where

1 n
fn(fﬂx) = n_HZ Tk(f,X).
k=0

Then for any function f € C[a, b] bounded on the
real line, we have

o im |7, (f, %) = fF()ll.. = 0,
Proof. Forn = p > 1, itis easy to show that
Dn,p(f'x) = §n+p—1(f' X)
n
2 (Erpa (10 = 60 (),
which implies

sup| Dy (f, ) = Enepr (F 0|
nzp

n
=sup— ||En+p—1(f' x)
nzp P

= &n-1(F )|l (2.5.3)
Also by Theorem 2.1, Condition (2.5.1) implies that
(€, D-lim,_, IT,(f, x) = f(O)ll., =0 (2.5.4)

Using (2.5.1)-(2.5.4) and the fact that g-convergence

implies (C, 1) convergence, we get the desired result.
This completes the proof of the theorem.

Theorem 2.6. Let (T, be a sequence of positive linear

operators on C[a, b] such that
n-1

) 1
llys#pgz ”Tn - To.k(m)” =0
k=0
If
o-1im||T,, (tV,x — x"|l, =0 (v=0,1,2) (2.6.1)
n

Then for any function f € C[a,b] bounded on the
real line, we have
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limllT, (F, ) = f@)ll, = 0. (262)
Proof. From Theorem 2.1, we have that if (2.6.1)
holds then

o-limlIT, (f, ) - f@)ll, =0,
which is equivalent to

lim [[supD,,, = (f,x) = f(x)|| =0
n m § ©
Now
n-1
1
Ty =D =Tn — gz Tokm)
k=0
n-1
1
= EZ(Tn - Tok(m))'
k=0
Therefore
n-—1

1
T, —supD,,, = sup—Z(Tn - To.k(m)).
m m nk=0

Hence using the hypothesis we get

h]gnllTn(f' X) - f(x)”w

= lim Supo,n(f' X) - f(x)
n m s
=0,
that is (2.6.2) holds.
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