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Abstract: In this paper, we investigate the global analysis of a virus infection model with  multitarget cells and 

multiple distributed intracellular delays. The model is a       -dimensional nonlinear delay differential equations 

that describes the dynamics of the  virus,   classes of uninfected target cells and   classes of infected cells. The 

incidence rate of infection is given by saturation functional response. The model has two types of distributed time 

delays describing the time needed for infection of target cell and virus replication. This model can be seen as a 

generalization of several models given in the literature describing the interaction of the virus with one class of target 

cells. Lyapunov functionals are constructed to establish the global asymptotic stability of the uninfected and infected 

steady states of the model. We have proven that if the basic reproduction number is less than unity then the 

uninfected steady state is globally asymptotically stable, and if the infected steady state exists then it is globally 

asymptotically stable. 
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1 Introduction 

In the last decades, there has been much 

interest in developing mathematical models of virus 

infection dynamics of many diseases [1]. This is 

because their importance to explore possible 

mechanisms and dynamical behaviors of the viral 

infection process, to estimate key parameter values, 

and to guide development efficient anti-viral drug 

therapies. Some of  these models are given by ODEs 

under an assumption that, the infection could occur 

and the viruses are produced from infected target cells 

instantaneously, once the uninfected  target cells are 

contacted by the virus particles (see e.g. [2], [3], [4], 

[5], [6] and [7]). Other accurate models incorporate 

the delay between the time the viral entry into the 

target cell and the time the production of new virus 

particles, modeled with discrete time delay or 

distributed time delay using functional differential 

equations (see e.g. [9], [10], [11], [26] and [28]). The 

basic virus dynamics model with distributed 

intracellular time delay has been proposed in [28] and 

given by 

                                              (1) 

                                      
 

 

                                                     

 

                                         
 

 

 

where            and       represent the populations 

of uninfected target cells, infected cells and free virus 

particles at time   , respectively. Here  , represents the 

rate of which new target cells are generated from 

sources within the body,   is the death rate constant, 

and     is the constant rate at which a target cell 

becomes infected via contacting with virus. Equation 

(2) describes the population dynamics of the infected 

cells and shows that they die with rate constant  . The 

virus particles are produced by the infected cells with 

rate constant    and are removed from the system with 

rate constant    The model includes two kinds of 

antiretroviral drugs, reverse transcriptase inhibitors 

(RTI) to prevent the virus from infecting cells and 

protease inhibitors (PI) to prevent already infected 

host cells from producing infectious virus particles. 

The parameters            and            are the 

efficacies of  RTI and PI, respectively. To account for 

the time lag between viral contacting a target cell and 

the production of new virus particles, two distributed 

intracellular delays are introduced. It is assumed that 

the target cells are contacted by the virus particles at 
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time     become infected cells at time  , where   

a random variable with a probability distribution     . 

The factor      

during time period          On the other hand, it is 

assumed that, a cell infected at time     starts to 

yield new infectious virus at time     

distributed according to a probability distribution 

    . 

    Many authors have devoted their effort in 

developing various mathematical models of  viral 

infections with discrete or distributed delays and 

studying their qualitative behaviors (see [9], [11], 

[26], [10], [28], [22], [23], [21], [27], [24], [31] and 

[33]). These works addressed the virus dynamics 

models under the assumption that the virus attack one 

class of target cells (e.g. CD  T cells in case of HIV 

or hepatic cells in case of  HCV and HBV). In case of 

HIV infection, the HIV has two classes of target cells, 

CD  T cells and macrophages [29]. In ([8], [30], 

[12], [13], [14], [17], [15], [19]), a class of HIV 

infection models with two classes of target cells has 

been proposed. The global stability of these models 

has been investigated in ([12], [13], [14], [15] and 

[19]). Since the interactions of some types of viruses 

inside the human body are not very clear and 

complicated, therefore the virus may attack more than 

two classes of target cells. In very recent works, Elaiw  

[18] and [16], has proposed some virus dynamics 

models with multitarget cells and investigated the 

global asymptotic stability of its steady states. In [16], 

multiple discrete-time delays have been incorporated 

into the model.  

    The purpose of this paper is to propose a delayed 

virus dynamics model with multi-target cells and 

establish the global stability of its steady states. We 

incorporate two types of distributed delays into this 

model to account the time delay between the time the 

target cells are contacted by the virus particle and the 

time the emission of infectious (matures) virus 

articles. We assume that the infection rate is given by 

saturation functional response. The global stability of 

these models is established using Lyapunov 

functionals, which are similar in nature to those used 

in [25]. We prove that if the basic reproduction 

number is less than unity, then the uninfected steady 

state is globally asymptotically stable (GAS) and if the 

infected steady state exists, then it is GAS. 

2 Virus infection model with multitarget cells and 

distributed delays 

 

In this section we propose a virus dynamics model 

which describes the interaction of the virus 

with     classes of target cells taking into account the 

saturation infection rate and multiple distributed 

intracellular delays. 

              
           

        
                           

 

               
 

 

     
             

          
  

                                       

                
                       

 

 

 

   

 

where     and     represent the populations of the 

uninfected target cells and infected cells of class  , 

respectively, and     is the population of the virus 

particles. Here             are positive constants,    

              and                       

The factors               account for the cells loss 

during the delay period. All the other parameters of 

the model have the same meanings as given in (1)-(3). 

The growth rate of the uninfected target cells of class   

is given by the function        . The following 

particular forms of function          have widely been 

used in the literature of virus dynamics: 

                 

                      
  

      
   

where    is the maximum proliferation rate of the 

target cells of class,   and        is the maximum level 

of target cells population in the body. We mention 

that, if           and       , then model (4)-(6) 

leads to the model presented in [33] and [31]. 

      The probability distribution functions         and  

      are assumed to satisfy          and          

and 
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where s is a positive number. Let  

          
      

 

 
 and            

       
 

 
 

           then         and      

              The initial conditions for system 

(4)-(6) take the form 

                                     

                                   

                                                                               

                     

where, 

                                    
        

and     is the Banach space of fading memory type 

defined as [32]: 

              
         

             
                                        

                                
      

where             
      is the Banach space of 

continuous functions mapping the interval        

into    
    . By the fundamental theory of functional 

differential equations [20], system (4)-(6) has a unique 

solution satisfying the initial conditions (7). 

Assumption A1 For          function          

  satisfies: 

(i)         is continuous, differentiable and        , 

(ii) there exits  an    
    such that 

     
           

    
     

      
                      

  

2.1 Non-negativity and boundedness of solutions 

   In the following, we establish the non-negativity and 

boundedness of solutions of (4)-(6) 

with initial conditions (7). Let                
  

and                 
   

Proposition 1. Suppose that Assumptions A1 holds 

true and                  be any solution of (4)-(6) 

satisfying the initial conditions (7), then              and 

      are all non-negative for        and ultimately 

bounded. 

Proof. First, we prove that              for all      . 

Assume that         lose its non-negativity on some 

local existence interval [   ] for some constant   and 

let     be such that         
    . From Eq. (4) we have 

     
                     Hence         

for some                where         is sufficiently 

small. This leads to a contradiction 

and hence         , for all      . Further, from Eqs. 

(5) and (6) we have 

            
      

            
 

 

        
    

             

          
     

 

 

 

         

               

            
 

 

 

   

       
                

 

 

 

Then similar arguments can easily be used to show 

that         and         for all       

Next we show the boundedness of the solutions. 

Assumption A1 and Eqs. (4) imply  that  

                  
 . 

If follows that        
                  

   
 

 
 

Let              
                   

 

 
, 

                      
         and      

       
  

  
    then 
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Hence                      where                            

Since         
                

 

 
 

we get                       . On the other hand, 

                 
                     

 

   

 

 

 

   

 

 

then                     where      
      

 
   

    

Therefore,            and          are ultimately 

bounded. 

 

2.2 Steady states 

     Assumption A1 ensures that system (4)-(6) has an 

uninfected steady state                , where    
  

is the solution of       
       

     and     . In 

addition to   , the system can has a positive infected 

steady state      
          The coordinates of the 

infected steady state, if they exist, satisfy the 

equalities: 

     
   

    
   

     
          

 =  
    

   

     
         1,         (8) 

           
  

   .                                                 (9) 

The basic reproduction number of system (4)-(6) is 

given by 

        
          

 

   

 

   

 

   

                               

where    is the basic reproduction number for the 

dynamics of the interaction of the virus only with the 

target cells of class  . 

2.3 Global stability analysis 

      In this section, we prove the global stability of the 

uninfected and infected steady states of system (4)-(6) 

employing the method of Lyapunov functional which 

is used in [25] for SIR epidemic model with 

distributed delay. Next we shall use the following 

notation:           for any                

          We also define a function          

       as 

                  

It is clear that         for any     and   has the 

global minimum       . 

Theorem 1. If        and Assumption A1 holds true, 

then     is GAS. 

Proof. Define a Lyapunov functional     as: 

         
   

  

  
   

 

  
  

 

   

 
  
  
       

     
             

          
    

 

 

 

 

 
  
    

       
                

 

 

 

 

     

where     
      

  
 

The time derivative of      along the trajectories of 

(4)-(6) satisfies 
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Collecting terms we get 
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If 0 1R  and Assumption A1 is satisfied, then 

1 0
dW

dt
 for all      . By Theorem 5.3.1 in [20], 

the solutions of system (4)-(6) limit to M, the largest 

invariant subset of 
1 0

dW

dt

 
 

 
. Clearly, it follows 

from (11) that 
1 0

dW

dt
 if and only if         . 

Noting that    is invariant, for each element of    we 

have      , then       . From Eq. (6) we drive that 

            

 

 

 

   

                  

This yields     . Hence  
   

  
   

if and only if           and    . From 

LaSalle.s  invariance principle,     is GAS. 

Assumption A2. For                 , function      

satisfies: 

   
  
 

  
              

                       

Theorem 2. If   exists and Assumptions A1-A2 hold 

true, then     is GAS. 

Proof.  We construct the following Lyapunov 

functional 

          
 

 

   

  
  
  
   

 

  
  
   

  
  
    

 

  
 
    

   

     
 
       

    

 

 

                

   
                   

  

  
               

 

 

 

     

 
    

 

    
       

       
       

  
  

 

 

 

 

       

     
 

  
                                                       

Differentiating with respect to time yields 
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Collecting terms we obtain 

   

  
        

  
 

  
 

 

   

       
    

  

     
 

 
  
  
       

      
               

 

            

 

 

   
  
  
  
  

 
 

  
 
    

   

     
 
       

    

 

 

                   

 

   
                    

               
    

 
    

 

    
       

       
       

  
 

 

 

     

    
  

 
          

    

 

 

         

 

   

      

Using the infected steady state conditions (8)-(9), and 

the following equality 

      
 

  
 
 

  
       

 

 

   

 
 

  
 

    
  

  
 

 

   

 

we obtain 

   

  
        

  
 

  
               

 

 

   

   

 
  
  
  
    

  
 

  
  

  
  
  
 
       

  

         
 
  
  
  
  

 
  

  
   

        
    

  
                    

  

    
               

   

 

 

 

 
  

  
   

        
    

 

 

   
                    

               
    

 
  
    

  
        

    

 

 

   
       

  
    

  
  
  
 
 

  
 

 
  
    

  
        

    
         

   
     

  
  
  
  

 

 

              

Then collecting terms of (12) and using the following 

equalities 
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Eq.(13) can be rewritten as  

   

  
         

  
 

  
               

    

 

   

    

 
  
  
  
  
  
 

  
      

  
 

  
    

  
  
  
   

    
       

  

         
 
 

  
 
     

     
 
  

 
  
  
  
  
     

     
 
      

     

     
 
   

 
  
  
  
        

                

 

 

 

  
  
                    

  

    
               

    

     
  
                    

  

    
               

      

 
  
    

  
        

                            

 

 

 

  
         

   
       

         

   
         

Using the following equality 

   
       

  

         
 
 

  
 
     

     
 
      

       
   

        
         

   

we can rewrite  
   

  
  as: 

   

  
    

 

   

    
  
 

  
              

        

 
  
  
  
 

       
   

        
         

         

 
  
  
  
   

  
 

  
  

  
  
  
   

     

     
 
  

 
    

 

  
        

     

 

 

 

  
  
                    

  

    
               

      

  
    

 

    
       

      
         

   
  

 

 

      

It is easy to see that if Assumption A2 is satisfied and 

     
    

              , then 
   

  
     By 

Theorem 5.3.1 in [20], the solutions of system (4)-(6) 

limit to M , the largest invariant subset of   
   

  
   . 

It can be seen that  
   

  
   if and only if     

   
         

and       i.e., 

  
                    

  

    
               

 
         

   
    

   For almost all                                                    

If       then from (14) we have       
   and hence  

   

  
  equal to zero at   . LaSalle’s invariance principle 

implies global stability of   . 

3 Conclusion 

  In this paper, we have proposed a virus dynamics 

model describing the interaction of the virus with n 

classes of target cells taking into account the 

saturation infection rate. Two types of distributed time 

delays describing time needed for infection of target 

cell and virus replication have been incorporated into 

the model. The global stability of the uninfected and 
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infected steady states of the model have been 

established by using suitable Lyapunov functionals 

and LaSalle invariant principle. We have proven that, 

if the basic reproduction number is less than unity, 

then the uninfected steady state is GAS and if the 

infected steady state exists then it is GAS. 
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