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Abstract: In this paper, we introduce new numerical method to deal with convection-diffusion problem.The 
proposed method is based on two dimensional block pulse functions under the framework of projection method.In 
this approach, we use operational matrices instead of partial derivatives, thus any PDEs problem is converted to 
linear or nonlinear system of Algebra. Error analysis for this method are given. Numerical examples demonstrate the 
efficiency and accuracy of this method.  
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1. Introduction 

 A stochastic process , associated with 
the convection-diffusion equation obey the stochastic 
differential equation  

   (1) 

 where  is the differential of a wiener 
process with unit variance. The above stochastic 
equation can be solved by finite difference method 
[7]. Although stochastic method do not suffer from 
the numerical diffusion on grid-based methods, they 
typically lose accuracy in the vicinity of interfacial 
boundaries. By Feymann-Kac theorem, equation (1) 

convert to -convection-diffusion equation [7]  

       (2) 

 subject to the initial and boundary 
conditions:  

         (3) 

 The convection-diffusion equation is a 
parabolic partial differential equation combining the 
diffusion equation and the advection equation, which 
describes physical phenomena where particles system 
due to two processes: diffusion and 
convection.Convection refers to the movement of a 
substance within a medium (e.g., water or air). 
Diffusion is the movement of the substance from an 
area of high concentration to an area of low 
concentration, resulting in the uniform distributed of 
the substance[2]. 

  The numerical methods for solving 
convection-diffusion model have been an active 

subject of research during the last thirty years [1, 4, 
15]. The development of the new techniques which 
can solve the model still attract substantial attention. 
Numerical grid-based methods such as the finite 
element method (FEM) [6, 16], the finite difference 
method (FDM) [9, 10, 11], the finite element method 
(FVM) [14] and spectral method [18, 19], were 
widely applied these last decades and remain most 
popular. However, the methods suffer from some 
limitations (difficulties on irregular or complex 
geometry and on mesh distortion or large 
deformation problems).This paper led to the 
development of a methods based on series expansion 
and piecewise constant functions. 

In this paper, we use two dimensional block 

pulse functions  to solve convection-

diffusion model.By applying  based on 
direct method, any PDEs convert to linear or 
nonlinear system of Algebra. We use operational 
matrices for partial derivatives. This method is 
simple and it's applicable for any PDEs. 

An outline of the paper is as follows:In 

section , we introduce  and their 

properties.In section  we present operational 
matrices for partial derivatives. Direct method for 
solving convection-diffusion equation are given in 

section . Error analysis for proposed method are 

investigated in section . Finally, in section ,we 
apply the proposed method on some examples 
showing the accuracy and efficiency of the method.  

 
2. Two dimensional Block-Pulse functions 
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A set of two dimensional Block-Pulse 

functions  

is defined in the region  and  
as: 

 

(4) 

 where  are arbitrary positive 

integers, and . There are some 

properties for  as following: 

The  are disjoint, orthogonal and 

complete set . 
We can also expand a two variable function 

 into  series: 
 

     (5) 

 through determining the block pulse 
coefficients: 

 

        (6) 

 

Also, for vector forms, consider the  

elements of  
 

    (7) 

 The two important properties of 2DBPF's 
are given as 

 (i):  

         (8) 

 where  is an  vector and 

. Moreover, it can be clearly 

concluded that for every  matrix : 
 (ii):  

            (9) 

 where  is an  column vector with 

elements equal to the diagonal entries of matrix . 

For simplicity, we use .  
 

Let , where 

, and  be the parabolic 

boundary of . If  are finite, 
 

 

If  are infinite, 
 

 
and 

 

      (10) 

 without loss of generality, set 

 and . The inner product 

 and norm  in  are defined as 
follows:  

          (11) 

  

      (12) 

 Let  be the projection operator defined 

on , where  is finite 

dimensional, as:  
     (13) 

 
First, we find an estimation of 

for arbitrary  

 Lemma 1 Let  be defined on 

 and  be projection operator defined by 

 then  

        (14) 

where  

for    . 
 

 Proof: The integral  is a 

ramp  on the subinterval  

with average value . 

The error in approximating the ramp by this 

constant value over the subinterval  is 

 

          (15) 

 hence, using  as least square of the error 

on , we have  

       (16) 

 

                        (17) 

 and on the interval  we have 
 

       (18) 

 
Operational matrix for partial derivatives 
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The expansion of function  over  

with respect to , 

can be written as 
 

      (19) 

Where 

, 

, and 
 

      (20) 

 
 

 (21) 

 

Now, expressing , in terms of 

the  as : 
 

 (22) 

 in which , is th component. Thus 

 

 (23) 

 where  is  matrix and is called 
operational matrix of double integration and can be 

denoted by , where 

 

 (24) 

 so, the double integral of every function 

 can be approximated by: 
 

 (25) 

by similar method , in 

terms of  as: 
 

 (26) 

 and 
 

 (27) 

 Now, we compute operational matrix for   

 Lemma 2 Suppose  and  

is defined on parabolic boundary  then 

operational matrix for  by 2DBPFs is 

approximated as:  

 (28) 

 that:  

 (29) 

where  is the following  
matrix as: 

 (30) 

 with  

 (31) 

 that  is initial boundary vector of . 

 Proof: By applying approximation 

 in  instead of  we have: 

 

 (32) 

 
and 
 

 (33) 

 

from  and  we can conclude: 
 

 (34) 

by the same method, operational matrix for 

 are given as follows. 

Lemma 3 If  and defined in 

parabolic boundary  then operational matrix 

for  and  by 2DBPFs are approximated as: 
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           (35) 

 

 (36) 

 where 
 

 (37) 

 
 

 (38) 

 and  are the following  
matrices: 

 

 (39) 

 

 (40) 

 and ,  are boundary vectors of 

. 
 

Direct method for solving nonlinear 

 

 
The results obtained in previous section are 

used to introduce a direct efficient and simple method 

to solve equations . We consider 

equations  of the form: 
 

 (41) 

 
 

                           (42) 

 
By substituting the equations (29), (37) and 

(38) into  and using boundary and initial 
conditions, we obtain a linear system with 

 as unknowns: 

 

 (43) 
Error analysis 
 Let the problem be of the form 

 

 (44) 

 where , ,  belong to 

. 

By using , the discrete approximation 

of  is :  

 (45) 

 where, for each ,  belongs 

to an dimensional subspace . 

 Theorem 1 Let  and  be in 

 and  be approximate solution by 

2DBPFs of   
 

 (46) 

 then  

 (47) 

 
 Proof: By using properties of projection 

operators, 
 

(48) 
  

(49) 
  

        (50) 

 

 

where  for 

, so by hypothesis of the theorem,  is a 

finite number and . So, if  then  

tends to zero. 
Numerical example 
 We present results of some numerical 

experiments to illustrate the effectiveness of the 
proposed method. To this end we choose convection-
diffusion equations taken from (Khojasteh Salkuyeh 
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2006) which are characterized by the fact of having 
parameter dependent solutions of the form  

 
 

where , are adjusted such that the 

condition  is satisfied.Initial and 
boundary conditions are in the case  

 
To show the efficiently of the present 

method we report absolute error which is defined by  

 (51) 

 at the point  where  is 

exact solution and  is numerical solution by 

2DBPFs. Error surface are plotted for showing the 
accuracy for two examples. 

 
Example 1 Parameters defining the problem 

(2)-(3) and the corresponding solution are 

. 
 
Example 2 Parameters defining the problem 

(2)-(3) and the corresponding solution are 

 
 

Table 1: Error between exact and numerical solution 
for example 1 (m=10)  

  
Exact 

solution 
Numerical 

solution 
Error 

0.0 0.0 9.9279e-1 9.8332e-1 9.4636e-3 
0.0 0.2 9.7372e-1 9.6366e-1 9.5508e-3 
0.0 0.4 9.5392e-1 9.4455e-1 9.3617e-3 
0.4 0.0 1.0072e-0 9.9972e-1 9.9715e-3 
0.4 0.2 9.6771e-1 9.7736e-1 9.8724e-3 
0.4 0.4 9.6771e-1 9.5803e-1 9.6771e-3 
0.7 0.0 1.0158e-0 1.0057e-0 1.0058e-2 
0.7 0.2 9.9573e-1 9.8576e-1 9.9573e-3 
0.7 0.4 9.7604e-1 9.6627e-1 9.7603e-3 
 
Table 2: Error between exact and numerical solution 
for example 2 (m=10)   

  
Exact 

solution 
Numerical 

solution 
Error 

0.0 0.0 1.000e-0 9.9015e-1 9.8050e-3 
0.0 0.2 9.9980e-1 9.8989e-1 9.9030e-3 
0.0 0.4 9.9660e-1 9.8969e-1 9.9010e-3 
0.4 0.0 1.0005e-0 9.9059e-1 9.9050e-3 
0.4 0.2 1.0003e-0 9.9030e-1 1.0003e-2 
0.4 0.4 1.0001e-0 9.9010e-1 1.0001e-2 
0.7 0.0 1.0003e-0 9.9039e-1 9.9080e-3 
0.7 0.2 1.0001e-0 9.9010e-1 1.0006e-2 
0.7 0.4 9.9991e-1 9.8990e-1 1.0004e-2 

 

 

Figure 1: Error surface for example 1 

 

Figure 2 : Error surface for example 2 

 
3. Discussion 

 In this paper, we introduced a new 
numerical scheme for convection diffusion equation 
by two dimension block pulse functions and their 
operational matrices for partial derivatives. This 
method can be used for any linear and nonlinear 
partial differential equations. We can say that this 
method is feasible and the error is acceptable. the 
implementation of the present method is a very easy, 
acceptable and valid. We can use other piecewise 
constant functions for example Haar, Walsh and 
wavelets.  
 
References  
[1] W. F. Ames, Numerical methods for partial 

differential equations, Academic press, 
Newyork, 1992.  

[2] F. Brezzi, G.Hauke, L.D.Marini,G.Sangalli, Lin-
Cutting bubbles for the stabilization of 



Life Science Journal 2012;9(4)                                                          http://www.lifesciencesite.com 

 

http://www.lifesciencesite.com             lifesciencej@gmail.com  1404 

convection-fiffusion-reacction problem, Math. 
Model methods. Appl. Sci., 13 (2003) 445-461.  

[3] E. Babolian, Z. Masouri, Direct method to solve 
Volterra integral equations of the first kind 
using operational matrix with Block Pulse 
functions, J. Comput. Appl. Math. 220(2008)51-
57.  

[4] E. Babolian, J. Saeidian, Analytic approximate 
solutions to Burgers, Fisher, Huxley equations 
and two combined forms of these equations, 
Commun. Nonlinear Sci. Numer. Simul. 14 
(2009) 1984-1992. 

[5] Z. H. Jiang, W. Schaufelberger, Block Pluse 
function and their applications in control 
systems, Springer- Verlag, Berlin Heidelberg, 
1992.  

[6] X. Gui Li, C. K. Chan, S. Wang The finite 
element method with weighted basis functions 
for singularly pertubed convection-diffusion 
problems using graded meshs, Appl. Num. 
Math., 56(10-11) (2006) 1314-1325.  

[7] P.E. Kloeden, E. Platen, Numerical solution of 
stochastic differential equations, Springer-
Verlag Berlin Heidelberg, 1992.  

[8] D. Khojasteh Salkuyeh, On the finite difference 
approximation to the cinvection -diffiusion 
equation, Appl. Math. Comput. 17 9 (2006) 79-
86.  

[9] M. Picasso, V. Prachittham, An adaptive 
alghorithm for the Crank-Nicolson scheme 
applied to a time -dependent convection-
diffusion problem, J. Comput.Math., 234(4) 
(2009).  

[10] Y. Ming Wang, X. Lin Lan, High-order 
momotone iterative methods for finite 
difference systems of nonlinear reaction-
diffusion-convection equations, Appl. Num. 
Math., 59 (10) (2009) 2677-2693.  

[11] Y. Ming Wang, A modified accelerated 
monotone iterative method for finite difference 
reaction-diffusion-convection equations, J. 
Comput. Appl. Math., 235 (12) (2009) 3646-
3660.  

[12] K. Maleknejad, M. Tavassoli Kajani, Solving 
second kind integral equations by Galerkin 
methods with hybrid Legendre and block pulse 
functions, J. Comput. Appl. Math. 45 (2003) 
623-639.  

[13] K. Maleknejad, M. Shahrezaee, H. Khatami, 
Numerical solution of integral equations system 
of the second kind by block pulse functions, J. 
Comput. Appl. Math. 166 (2005) 15-24. 

[14] M. Stynes, Finite volume methods for 
convection-diffusion, J. Comput. Appl. Math, 
63 (1-3) (1995) 83-90.  

[15] G. D. Smith, Numerical solution of partial 
differential equations,Clarendon on 
press,Oxford,1989. 

[16] J. Volker, E. Schmeyer, Finite element,ethods 
for time-dependent convection-diffusion-
reaction equations with small diffusion, 
Comput. Methods. Appl. Mech. Engineering, 
198 (3-4) (2008) 475-494.  

[17] A. D. Polyanin, V. F. Zaitsev, Handbook of 
nonlinear partial differential equations, 
Chapman and HALL/ CRC, 2000. 

[18] F. Pasquareli, Effective spectral approxima tions 
of convection diffusion equations, Comput. 
Methods Appl. Meck. Engin., 116 (1-4) (1994) 
39-51.  

1. [19] A. Ware, A spectral lagrange-Falerkin 
method or c onvection dominated diffusion 
problems, Comput. Math. Appl. Mech. Engin., 
116(1-4) (1994) 227-234..  

 

 
 
9/6/2012 


