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Abstract: Extended F-expansion method is proposed to seek exact solutions of the Zhiber-Shabat (ZS) equation. As
a result, many new and more general exact solutions are obtained. Interesting Jacobi doubly periodic wave solutions
is obtained from the F-expansion (EFE) method with symbolic computation. It is shown that soliton solutions and
triangular periodic solutions can be established as the limits of Jacobi doubly periodic wave solutions. In addition, as
an illustrative sample, the properties for the Jacobi doubly periodic wave solutions of theses equations are shown

with some figures.
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1. Introduction

Conte and Musette [1], studied Zhiber-
Shabat (ZS) equation and obtained two kinds of
solutions. Wazwaz [2] obtained six exact solutions of
ZS equation by using tanh and extended tanh
methods. Tang et al. [3] considered the existence of
bounded travelling wave solutions of ZS equation
and obtained several travelling wave solutions.
Recently, Bin et al. [4] studied ZS equation using the
bifurcation theory and the method of phase portraits
analysis and obtained many solitary wave solutions,
compacton solutions and smooth periodic wave

'

solutions. Moreover, the E -expansion method is

introduced to solve ZS equation by Borhanifar and
Moghanlu [5] .
In this paper, we will apply the extended F-
expansion method to study ZS equation
u, +pfe" +ye + e =0, (1)
where [, ¥ and A are arbitrary constants. If we
take ¥y =1 =0, Eq. (1) reduced to the Liouville

equation [6]. If we take A =0, Eq. (1) reduced to
the sinh-Gordon equation [7]. And for ¥ =0 (1)
reduced to the well-known Dodd-Bullough-
Mikhailov equation [8]. Moreover, for =0,

y=-1, =1, (1) reduced to the Tzitzeica-Dodd-

Bullough equation [8]. The previous equations plays
an important role in many scientific applications such
as solid state physics, nonlinear optics, dusty plasma,
plasma physics, fluid dynamics, mathematical
biology, nonlinear optics, dislocations in crystals,
kink dynamics, and chemical kinetics, and quantum
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field theory. Moreover many authors have studied
these equation (see for instance, [9]-[10]).

It is known that many physical phenomena
are often described by nonlinear evolution equations
(NLEEs). Integrable systems and NLEEs have
recently attracted much attention of mathematicians
as well as physicists. Many methods for obtaining
explicit travelling solitary wave solutions to NLEEs
have been proposed. Among these are the tanh

methods [11]-[12], g-expansion method [13]-[14],
G

the exp-function method [15]-[16], Jacobi and
extended Jacobi elliptic function expansion methods
[17]-[18], the inverse scattering transform [19]- [20]
and so on. Recently F-expansion method [21]-[25]
was proposed to obtain periodic wave solutions of
NLEEs, which can be thought of as a concentration
of JEF expansion since F here stands for everyone of
JEFs.

In this paper, we apply the extended F-
expansion (EFE) method with symbolic computation
to Eq. (1) for constructing their interesting Jacobi
doubly periodic wave solutions. It is shown that
soliton solutions and triangular periodic solutions can
be established as the limits of Jacobi doubly periodic
wave solutions. In addition the algorithm that we use
here also a computerized method, in which
generating an algebraic system.

2. Material and Methods

In this section, we introduce a simple
description of the EFE method, for a given partial
differential equation .

G(u,u_,u,,u )=0.

Xt

)
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We like to know whether travelling waves (or
stationary waves) are solutions of Eq. (2). The first

step is to unite the independent variables ¥ and t
into one particular variable through the new variable

F=x—-vt, u(x,t)=U(J),
where ¥ is wave speed, and reduce Eq. (2) to an
ordinary differential equation(ODE)

GU.UUU",..)=0. 4

Our main goal is to derive exact or at least
approximate solutions, if possible, for this ODE. For

v

this purpose, let us simply U as the expansion in the
form,

N N
u(x,0)=U()=Y aF +Ya F~,
i=0 i=1

“4)
where
F'=+lA+BF* +CF*, )
dr
the highest degree of 7 is taken as
d’U
N+ ) :132a3a“':
(dé,p) PP
(6)
0w Iy = (g41)N+p. g=012:p=123.-
ag’r
(7

Where A, B and C are constants, and N in Eq.
(3) is a positive integer that can be determined by
balancing the nonlinear term(s) and the highest order
derivatives. Normally N is a positive integer, so that
an analytic solution in closed form may be obtained.
Substituting Egs. (2)- (5) into Eq. (3) and comparing
the coefficients of each power of F(&) in both
sides, to get an over-determined system of nonlinear
algebraic equations with respect to vV, a,, a,, **-

Solving the over-determined system of nonlinear
algebraic equations by use of Mathematica. The
relations between values of 4 , B, C and

corresponding JEF solution F'({) of Eq. (4) are
given in Table 1. Substitute the values of 4, B, C

and the corresponding JEF solution F'({) chosen

from table 1 into the general form of solution, then an
ideal periodic wave solution expressed by JEF can be
obtained.
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Table 1: Relation between values of ( A, B,C') and

corresponding F'

A B C F(&)
1 1-m? m? sn(¢),
_en(&)
cd(¢ )= an(0)
1-m? 2m’ -1 -m? en(g )
m* -1 2-m* -1 dn(f)
m’ 1-m? 1
S(C)—(g)
_dn($)
de(¢ )= n(?)
-m* 2m? -1 1-m? !
ne(g )>=———- n(2)
-1 2-m? m* -1
(5)‘61 @)
1 2-m* 1-m* _ S”l@)
se(§ )= n(0)
1 2m? -1 -mz(- (4)
1-m?) _sn(g)
m sd(& )= an(0)
1-m* 2-m* 1 _ cn(é’)
es(g )= sn(0)
-m*(1- | 2m*-1 1 o)
2 _dn
" S0
1 T [ (e
4 1-2m’ 4
2
1+m ne( ¢ )tsc(<)
1—m? 5 1-m?
4 2
T 2| o | s e
4 2 4
m? m* =2 m? )
vy > 4| series(Q)
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where sn(¢), en({) and dn (&) are the JE sine

function, JE cosine function and the JEF of the third
kind, respectively. And

cn® (&) =1-sn’({),dn* (&) =1-m’sn*($), ©®)
with the modulusm (0 <m <1).
When m —> 1, the Jacobi functions

degenerate to the hyperbolic functions, i.e.,
sng —>tanhl, cnd —> sechl, dnd — sechd,

when m—> 0, the Jacobi functions degenerate to the
triangular functions, i.e.,

sné — sing, cnd —>cos¢ and dn—1.

3. Results
In this section, we will apply the extended
method to study ZS equation (1)

u, + e’ +y + e =0, ©)
if weuse  =x—w, u(x,t)=U({) carries Eq.
(9) into an ODE

— VU + e’ + eV + eV =0,
if weuse V = e carries Eq. (10) into:-

—v(V =V )Y + BV +yV +A=0. (11)
Balancing the term V' with the term V> we
obtain N =2 then

V($)=a,+aF+a ,F"'+a,F*+a ,F~,

F'=+A+BF*+CF*.

(10)

(12)

Substituting Eq. (12) into Eq. (11) and
comparing the coefficients of each power of F' in
both sides, to get an over-determined system of

nonlinear algebraic equations with respect to vV, @,

i=1, =1, i=2, —2 . Solving the over-
determined system of nonlinear algebraic equations
by use of Mathematica, we obtain three groups of

constants:
1.

_2Bv—\J4(B> +124C)> -3y

a,=a,=0, a,

3p
2Cv 24v
a, = , a,= s
B B
A= Tlﬂz(ZGﬂV +8B%? +96ACV2)\/4(BZ +124CW* =38y
—16B*V* + 576 ABCV?),

(13)
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2.
a=a,=a =0,
. _ 2Bv—[4(B’ -34C)v* ~3py L 24y
0 3ﬁ k] -2 ﬂ b}
A= Tlﬁ)z(Z(3ﬁ}/+SBzvz +96ACV W 4(B? —34C)W> -3y
—-16B*v* +724BCV?),
(14)
3.
a=a,=a’=0,
_2Bv—\4(B> ~34C)} -3y _2Cv
0 3ﬂ ) 2 ﬂ )
A= 271[}2 (2(3By +8B*V* +96ACV2)\/4(BZ —34CW* =38y
—16B*v’ +724BCV?).
(15)
Now, the solutions of ZS equation (9) can
be written as follows:
21+ m* W +J4(12m* + (1+m> W =38y
u, = In[— 16
38 (16)
2
+ 2m Vsnz(x—vt)+£nsz(x—vt)],
B
2(1+m ) ++/4(12m% + (1+m>) W =3By
u, = In[-
3p
2m? 2
+ MY (x -y + X det (- ),
B
17)
" m[_z(l—zmz)v+J4(12mz(mz—1)+(2m2—1)2v2)—3ﬁy
2 Sﬂ
—ZmT‘/cnz(x—Vt)
21-m’Ww
+———nc (x—w)],
B
(18)
2m> =2 +J4(2—m?)> +12(1- m> )W =3By
u,= In[—

3p
—Z—;dnz(x -1)

+2(mzﬂ_1)vnd2(x—vt)],

(19)
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2(m* =2+ \J4(12(1- ) + 2-m*)* )P =3By

2L A m?) 3w =3By

us = Inf 38 w, = Inf 38
v,
+?cs (x—wr) +2—/‘;nsz(x—vt)],
v(l-m?) , 3
+7ﬁ sc™(x—-w)], (26)
(20)
- 201+ m>)v +~4((1+ m?) =3m> > =3By
52 2 2 9 2N2y,,2 up = In[- 27)
y= 202 W+ JA(12m> (1+ m?) +(1-2m° > =3By 3
’ 38 + 2 4 (=],
+%§dﬁ(x—w)+35@51ifilsd%x—wn, P
1) I 2(1=2m> W ++J4Bm> (1= m*) +2m* =1)’v*) =3By
= Inl—
13 3ﬂ
21-m*y
W 1n[_2(m2—().5)1/+\/4(O.75+(0.5—m2)2)v2—3ﬂ7 +wnc (x—w)],
7 3 (8)
+ZL(ns(x—vt)+cs(x—vt))2
Vﬂ - 2m® =2+~ 42— m*) = 3(1—m> )W 3By
+ﬁ(ns(x—vt)+cs(x—vt))'z], = In[- 35
+Mndz(x—vt)],
(22) B
(29)
I 2
Ug = ln[3ﬂ (2(05+05m )V _ ]n[_ 2(m2 —2)V+\/4(3(m2 _1)+ (2_m2)2)v2 _3,8]/
—J4(12(0.5-0.5m7)(0.25-0.25m>) +(0.5+0.5m>)* )" 238y ) 38
2 2
+2v(0.5;0.5m )(nc(x—w)+sc(x—w))2 +2V(1,6’ n )s02 (x—-w)],
2
.\ 2v(0.51—80.5m ) (ne(e—vi) + sc(e—)) 2], (30)
(23) - 2(1=2m> v +J4((1-2m>) =3m> L+ m>)WV* =38y
16 - 3ﬂ
B 2(0.5m2—1)v+\/4(0.751;1;+(I—O.sz)z)vz—3ﬂy L2 o
2 31
+”21[: (ns(x— 1) + ds(x - 1)) (1)
+ 2 (ns(x—ve) + ds(x—ve)) 2], 2(m* =0.5)v +\/4((0.5 -m’)’ —i)v2 -3py
28 v = [ 16
(24) 7 34
14 -2
e vt -vt) ],
2(1-0.5m>) +4/4(0.75m" +(1-0.5m>) W* =3y +2ﬂ (ns(x =)+ es(x—v)) ]
U, = In[— 3 (32)
s
2
ML (sn(x—vt) +ics(x—w))? - ln[i(Z(O 540.5m%)y
A 18 3[3 . M
+ ’; Y (sn(x—vt) +ics(x—w)) ], —\/4(3(0.5m2 —0.5)(0.25-0.25m) +(0.5+0.5m>)* W’ =3 8y)

(25)
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_ 2
N 2v(0.5-0.5m )(n

5 c(x—vt)+sc(x— vt))’z],
(33)
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2(0.5m? —1)V+\/4((1—0.5m2)2 3 sp,
u,= In[— 16
3p
+i(ns(x—vt)+ds(x—vt))'2 1
(34)
2(1—0.5m2)v+\/4((1—0.5m2)2 —%)v2 ~38y
Uy = In[- 38 6
+ 'ZZV (sn(x—vt) +ics(x—v) 2],
(35)
. 1n[_2(1+m2)v+\/4((1+m2)2—3m2)\/2—Sﬂy
21 2 3ﬁ
+ 2m Vsnz(x—vt)],
(36)
N 2(1+m> )+ 41+ m>)> =3m> > =3By
3B
+2m—ﬂvcd2(x—w)],
(37)
u ln[_2(1—2m2)v+\/4(3m2(1;;nz)+(2m2—1)21/2)—3,6’}/
—Zmizvcnz(x—vt)]
ﬂ 9’
(38)
N 2m’ —2)v+\/4((2—n;2ﬂ)2 —3(1-m>)W> =38y
—anz(x—vt)]
ﬂ b
(39)
2m> = 2)v +43(m> 1)+ 2 —m> Y W =3By
Uy = In[-

3p

+%chs2 (x—w)],

(40)
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2(1-2mP)v A1 2m7) =3mP (L4 mP))V ~3y

Uy = In[ 3
+£ds2(x—vt)]
ﬂ 2
(41)
2(m2—0.5)v+\/4((0.5—m2)2—3)v2—3ﬂ7/
Uy, = In[— 16

3p

+i(ns(x—vt)+ es(x—w))’],

(42)

Uy = m[i(z(o.s +0.5m%)v

—J4(3(0.5m* —0.5)(0.25-0.25m7) +(0.5+0.5m>)* )v> =3 8y)

f2OSZ05m) Ly se(x—v))),

s
(43)
2(0.5m> —1)v+\/4((1—0.5m2)2 —ﬁ)v2 -3y
Uy = In[— 6
3B
+’Z Y (ns(x—ve) + ds(x —v))*],
(44)
2(1-0.5m*)v +\/4((1—0.5m2)2 —ﬁ)lﬁ -38y
Uy, = In[— 16
3p
+ r;z[;/ (sn(x —vt)+ics(x —vt))*].

(45)
The modulus of solitary wave solutions #, ,

u,, U, and u,, are displayed in figures 1, 2, 3 and

4 respectively, with values of parameters listed in
their captions.
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Fig. 1 (b)
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Fig. 1 The modulus of solitary wave solution #, (Eq.
16) where m= =y =0.5.

Fig. 2 (a)

Fig. 2 (b)
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Fig. 2 The modulus of solitary wave solution %, (Eq.

17) where m= =y =0.5.
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Fig. 4 (a)

:
H
H

Fig. 4 (b)

bl

<<<<<

Fig. 3 The modulus of solitary wave solution #,
(Eq. 31) where m= =y =0.5.

Fig. 4 The modulus of solitary wave solution #,,
(Eq. 37) where m= =y =0.5.
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3.1 Soliton solutions 2
Some solitary wave solutions can be —v- a4 3By S
obtained, if the modulus ” approaches to 1 in Egs. Uy = Inf NV +ﬁ(tanh(x—vt)+icsch(x -v) "],
(16)-(43) (54)
4y +4/4v° -3 2v
Uy = ln[mﬂy + ?tanh2 (x—v)l,

(46) v v 3By
In[

VZ

_v4 v _ — )2
3 + 25 (coth(x —vt) +csch(x—wvt)) 7],

1n[4v+\/4v2—3,37/ 2 (55)

Uy = —, * 7C0th2 (x - Vt)],

%
3B B
“7) - ln[zv—Jloov2 38y 2

= T 4= eseh (x—wr) +%/ sinh® (x—w)],

Vv
41 3ﬂ ﬂ

ln[Zv—w/4V2 -3fy 2v (56)

Uy = 35 - ?sech2 (x-w)],
(48) v W =38y v
u, = In[———— "% 4+~ (coth(x —vt) +csch(x—wt))*
3p 2p
14
a2 +—(coth? (x —vt) +csch® (x —vt)) 2],
wy = I[N T 2 ), 25
3p B (57)
(49)
V2 3p
e vy
uy, = 2 5> +3By P )] Uy = I—V4 Y (anh(x—w) +icsch(x —w))?
35 3 ,3 ,3 ’ 3 ﬁ 2 ﬁ
(50) + i (tanh(x —v) + icsch(x —ve)) 2.
(58)
U = 1n[4v_— V64v” ~3py + Qtanhz (x—vt)+ Qcothz (x—w)], 3.2 Triangular periodic solutions
36 > . . . .
3p s s Some trigonometric function solutions can

(51) be obtained, if the modulus " approaches to zero in
Egs. (16)-(43)
2V -4 =3py . 2v

2 W= In[————— 4+ = oot (x—w)],
i %—3,37 y “ ol 3B IBCOt (=] (59)
Uy, = In[————
3p 2B

+—— (tanh(x —vt) +icsch(x —vt))*],

52
(52) _ 1n[—4v—\/4v2—3ﬂ7+2v

chc2 (x—w)],

3p
2 60
T "
Uy = In[—————+——(coth(x—w)+csch(x—w))’], 2
38 205 Uy = 1n[@+18in2(x—v[)],
(53) 38 B (61)
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—2v—\/4v —3ﬂ7

=Y se Y(x=w)],

(62)

n[—2v— 34; —3br +2ﬁvsecz(x—Vf)],

\/ v —3ﬂ7

tan 2(x—w)l,

21/—\}41/

—1\121/ +3ﬂ7/

\/41/ —3ﬂ7/

—1\121/ +3ﬂ7

2v—\/4v —S[ﬁ’y

?(csc(x - Vt) +cot(x—wv)) 7],

v —iy 2V’ +3,B}/
3p

+%(wdx—w)+mmﬁ—w»4}

ln[

,3 (sec(x V) + tan(x —

http://www.lifesciencesite.com

(63)

(64)

(csc(x vt) +cot(x —vt)) 2],

(65)

(66)

(67)

(sec(x i)+ tan(x — 1)),

(68)

(69)

)’

(70)

(sec(x vt)+ tan(x —w)) 7],

+—(csc(x v +cot(x —vt))*],

(csc(x Vi) +cot(x —vt))* +

1161

Note: The solutions Uy, , Uy, , Uy , Uy

and u,, are the same as in Wazwaz [2]. And the

solutions of the special equations in [2] can be
obtained where the parameters are taken as special
values as pointed in introduction.

4. Discussions

By introducing appropriate transformations
and using extended F-expansion method, we have
been able to obtain in a unified way with the aid of
symbolic computation system-mathematica, a series
of solutions including single and the combined Jacobi
elliptic function. Also, extended F-expansion method
is shown that soliton solutions and triangular periodic
solutions can be established as the limits of Jacobi
doubly periodic wave solutions. When m —> 1, the
Jacobi functions degenerate to the hyperbolic
functions and given the solutions by the extended
hyperbolic functions methods. When m — 0, the
Jacobi functions degenerate to the triangular
functions and given the solutions by extended
triangular functions methods.
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