
Life Science Journal 2012;9(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 988

Formal Modeling towards the Context Free Grammar

Nazir Ahmad Zafar1, Sher Afzal Khan2, Fahad Alhumaidan1, Bushra Kamran3

 1Department of Computer Science, King Faisal University, Hofuf, Saudi Arabia
 2Department of Computer Sciences, Abdul Wali Khan University, Mardan, Pakistan

3Faculty of Information Technology, University of Central Punjab, Lahore, Pakistan
nazafar@kfu.edu.sa;sher.afzal@awkum.edu.pk;falhumaidan@kfu.edu.sa;bushra.kamran@ucp.edu.pk

Abstract: The language to control objects is a primary requirement in design of a complex system. Context free
grammar plays an important role in modeling control functionalities of a system by grammatical rules. This
generates naturally the operation of a system by the language which having commands in the form of strings
generated by variables which are nested inside variables arbitrarily deeply. The formal method Z is an ideal notation
which is used for describing state space of a system and then defining operations over it. Consequently, an
integration of context free grammar and Z will be an effective tool for increasing modeling power for a complex
system. In this paper, we have given a procedure for integrating CFG and Z. Formal definition of a CFG is defined.
Then derivation of a string and further development of formal language is formalized. The specification of this
relationship is analyzed and validated using Z/EVES tool.
[Zafar NA, Khan SA, Alhumaidan F, Kamran B. Formal Modeling towards the Context Free Grammar. Life Sci
J 2012;9(4):988-993] (ISSN:1097-8135). http://www.lifesciencesite.com. 152

Keywords: Integration of approaches; Context free languages; Formal specification Z; Model checking.

1. Introduction

Machines are controlled by computer based
systems and, of course, computers are controlled by
software systems. When software is used in
controlling a complex system, for example, safety
critical system; its failure may cause a big loss in
terms of wealth, deaths, injuries or environmental
damages. Consequently, constructing correct
software is as important as its other counterparts, i.e.,
hardware or electro-mechanical systems (Hall, 2002).
Formal methods are mathematical based techniques
used for specification of properties of software and
hardware systems for insuring their correctness
(Burgess, 1995). We can describe a mathematical
model of a system and then it can be analyzed and
validated increasing confidence of development
(Gwandu et al., 1994).

At the current stage of development in formal
methods, it is not possible to develop a system using
a single formal technique and as a result integration
of approaches is required. That is why integration of
approaches has become a well-researched area.
Further, it is an open research area in computer
science and engineering leading to development of
automated computer tools and techniques.

Design of a complex system, not only requires
functionality but it also needs to model its control
behavior. There are a large variety of techniques for
software specification which are suitable for specific
aspects in the process of the software development.
For example, Z notation, Vienna Development
Methods, B Method and algebraic techniques are
usually used for defining data type while Petri nets,

process algebras, automata and state-charts are best
suited for capturing dynamic aspects 4. Therefore it is
required to identify a relationship between static and
dynamic modeling techniques for complete
development of a system.

Although integration of approaches is a well
researched are (Beek et al., 2004; Hasan et al., 2007;
Gervais et al., 2005; Araki et al., 1999; Akbarpour et
al., 2002; Raymond, 2004) but there does not exist
much work on formalization of structures which
generates formal languages. Dong et al (2004, 2005)
described the integration of Object Z and timed
automata. Another piece of good work is reported by
Constable (1997, 2000) has proposed a constructive
formalization of some important concepts of
automata using Nuprl. A relationship is investigated
between Petri-nets and Z notation in (Heiner et al.,
1999; He, 2001). An integration of B method and
UML is presented in (Leadinng et al., 2002,2002a).
Wechler, W. has introduced some important
algebraic structures in fuzzy automata (Wechler,
1978). In (John et al., 2002), a treatment of fuzzy
automata and fuzzy language theory is discussed
when the set of possible values is a closed interval [0,
1]. Ito, M., has described automata and formal
languages from the algebraic point of view.
(Mansoor et al.,2007). Proposed, an algorithm to
eliminate the useless productions of CFG.

In this paper, a relationship between Z notation
and CFG is checked and verified after removing
inconsistencies. Formal construction is given using Z
notation, and it is analyzed and validated using
Z/EVES tool. The major objectives of this research

Life Science Journal 2012;9(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 989

are: (i) identifying and proposing an integration of
context free grammar and formal methods enhancing
modeling power of complex systems and (ii)
providing a syntactic and semantic relationship
between Z and CFG. In section 2, an introduction to
formal methods is given. In section 3, an overview of
context free grammar is provided. Formal
specification of context free grammar is described in
section 4. Section 5 describes the modeling analysis.
Finally, conclusion and future work are discussed in
section 6.
2 Formal Methods

Formal methods are mathematical approaches
used for describing and analyzing properties of
software systems (Khan et al., 2011, 2011(a),
2011(b); Zafar et al., 2012). These techniques are
based on discrete mathematics such as logic, set
theory and graph theory. Formal methods may be
classified in several ways. Property and model
oriented methods are two main classification of it
(Brendan, 1998; Khan et al., 2007). Property oriented
methods are used to describe software in terms of
properties or constraints that must be satisfied. Model
oriented methods are used to construct a model of a
system’s behavior (Spivey, 1989; Ahmad et al.,
2011,; Ali et al., 2012, 2012(a)). Formal methods are
used to improve quality of software systems by
means of documenting and specifying in a precise
and structured manner. Although formal methods are
successfully applied in many research areas of
computer science but at the current stage of their
development, it requires an integration of formal and
traditional approaches.

Z notation is one of the most popular
specification languages in formal method. The Z
(Spivey, 1989) is a model oriented approach, which
is based on set theory and first order predicate logic.
It is also used for specifying the behavior of systems
as an abstract data types and sequential programs can
also be modeled using it. In this paper, Z is selected
to be integrated with algebraic automata because a
natural relationship exists between these approaches.
The Z is based upon set theory including standard set
operators, set comprehensions, Cartesian products,
and power sets. On the other hand the logic of Z is
formulated using first order predicate calculus. The Z
notation is used in our research because it allows
organizing a system in smaller pieces known as
schemas. The schema defines the way in which state
of the system can be modified. A promising aspect of
Z is the mathematical refinement which is a stepwise
verifiable transformation of an abstract specification
into a concrete executable program. Once formal
specifications in Z are written it can be refined into
actually implemented system by the process of
stepwise mathematical refinements.

3 Context free grammar
A context-free grammar (CFG) generates a

formal language where a clause is nested inside
another clause making a best use of recursion. Every
production of a context free grammar is of the form:
S → t, where S is a non-terminal consisting of a
single character/symbol and t is a string which may
contain only terminals or non-terminals on
combination of both. Further, t might me an empty
string. The notation: S → t is called a production or a
rule. Context free grammar consists of such kind of
rules which are applied one after other producing a
parse tree. The tree ends with terminals which are
leaves of the tree and each internal node is a non-
terminal which produces one or more further nodes.
The left hand side of a production rule of a context
free grammar is always a single non-terminal.
Because all rules only have non-terminals on the left
hand side and it can easily be replaced with the string
on the right hand side of this rule. Further the context
in which the symbol occurs is therefore not important
and hence the grammar is called context free
grammar. It is to be noted that the context free
grammar(s) are always recognized by finite state
machines having a single infinite taps. For keeping
track of nested units, the current parsing state is
pushed at the start of the unit and it is recovered at
the end. The context free grammars are very
important in designing and description of the
programming languages and their compilers. The
syntax of natural languages can also be analyzed by
using it.

The formalism of context-free grammar was
developed by Noam Chomsky who described the
linguistics in a grammatical form and finally
converted into mathematical models providing a
precise and simple mechanism for describing of
languages. This way of description of languages
makes the formalism producing rigorous
mathematical studies. The context free grammars
allow an efficient parsing of algorithms and their
constructions in a simple way. Using the grammar, it
can be determined whether a string can be generated
or not. Further, the way of generation is also
determined. On the other hand, context free
languages have their own limitations. For example,
some of the operators, which are well-defined in
many models of automata theory, do not behave well
in case of context free grammar. The intersection of
two context free grammars, in general, is not context
free, is an example of those operators. The
complement of a context free language is not context
free, is another example of it. However, union,
concatenation and Kleene star operators produce
context free language when applied to context-free
language or languages.

Life Science Journal 2012;9(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 990

4 Formal Specification of Context Free Grammar
In this section, an integration of some important

concepts of CFG and Z notation is given. It is
mentioned that the definitions used are based on the
book with title “Algebraic Theory of Automata and
Languages” (Brendan et al., 1998). The set of
structures used are: (i) CFG (ii) Derivation (iii)
Derivations (iv) WorldOfCFG and (v)
LanguageOfCFG.

We start with the definition of context free
grammar which is a 4-tuple (V,∑, R, S), where, V is a
finite set of non-terminals, ∑ is the set of terminals, it
is disjoint from V, this make the words for a
language. S is the start non-terminal. R is the relation
from V to (V ∑)*such that  w(V ∑)*: (S,w)
R. In the specification denoted by CFG, we define the
sets of non-terminal by V, set of terminal by Sigma,
the set X denotes both the set of terminals and non-
terminals. The notation rules define the relation
between V and seqX. The seqX, denotes the set of all
sequences containing terminals and non-terminals.
The predicate part defines, Sigma is a finite set of
terminals, it is disjoint from the set of non-terminals.
The production rules are defined by the relation
denoted by rules such that if  a stringof type seqX
then (s0, w) rules. Where s0 is the start non-
terminal used to represent the whole sentence or
program.

Invariants:

1. The variable s0 must be an element of
variables.

2. The domain of rules relation is subset of
variables.

3. The terminals and non-terminals are disjoint

sets.
4. The entire set of alphabets is union of

terminals and non-terminals.
5. There exists at least one rule which contains

start variable on the left hand side.
6. Elements of all the rules are members of

alphabets.
Formal Construction of Productions

In this section, we describe the formal
specification of production rules. Production rule is
substitution rule perform recursively to derive new
string of terminal and non-terminal from the string of
terminal and non-terminal.

In the specification denoted by the Derivation, we
specify the process of production of one string from
another string of terminal and non-terminal. In the
specification st1 and st2 are two strings of type seqX.
We say st1 yields st2 if  aV, b, st3 and st4seqX
such that:

Thus, st2 is the result of obtained by the rule (a, b) to
st2.

Formal Construction of further Derivations

The specification schema denoted by
Derivations is the extension of schema Derivation.
This specify the generation of one string of non-
terminals or terminals to the string of non-terminals
or terminals. In the specification we consider two
strings of non-terminals or terminals denoted by st1
and st2. The schema Derivations call the schema
Derivation in successive manner and develop the
productions: st1st3 st3st4  s4st5 st5st2
as specified.

In many fields of computer sciences words
generated from grammar to code certain programs
used to functionalize a system. The schema denoted
by WorldOfCFG is used to generate strings of
terminals from the strings of non-terminals and
terminals. Word of CFG is define to be a string of
terminals of type seq Sigma generated by successive
production from the string of non-terminals or

Life Science Journal 2012;9(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 991

terminals of type seqX. For generating word
WordOfCFG uses operation of schema Derivations to
perform the desire production.

Worlds generated by CFG

Language generated by CFG.

The set of words generated by a schema
WordOfCFG is called a context-free language. In the
specification LanguageOfCFG a sequence of
terminal is denoted by w is of type seq Sigma belongs
to the set language if there exist a set of derivations
from s0 to w operated by the schema Derivations as
specified in the following schema.


5 Model Analysis

As we know that there does not exist any
computer tool that may guarantee about the complete
correctness of a computer model. That is why we can
believe that even the specification is written, in any
of the formal languages, it may contain potential
errors. That means the art of writing formal
specification never assures the consistencies,
correctness and completeness of the system to be
developed. But, on the other hand, if the formal
specification is checked and analyzed with computer
tools it certainly identifies, if exist, the potential
errors in syntax and semantics of the formal
description of a system. The Z/EVES is one of the
most powerful tools which we have used for writing
validating and analyzing the formal specification
written in Z.

Life Science Journal 2012;9(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 992

Conclusion
In this research, the approach of context free

grammar is combined with Z notation which defining
a relationship between fundamentals of these
approaches. At first, we have described formally the
structures of context free grammar then formal
models of derivation process from a string to a string
of non-terminals or terminals is presented. Further we
specified the process of production in sequence by
using the schema Derivations. At the end we
presented the formal model to generate the words
from CFG and further its language. Formal proofs of
the above models are presented under the certain
assumptions. Formal models of few interesting
algebraic structures and its variants are proposed by
reusing the definitions of the abstract structures. The
specification of this integration is verified and
validated using Z/Eves tool. An extensive survey of
existing work was done before initiating this
research. Some interesting work (Wechler, 1978;
Tuan, 2000, Bowen, 1996, Vilkomir, 2001) was
found but our work and approach are different
because of conceptual and abstract level integration
of Z and CFG. Why and what kind of integration is
required, were two basic questions in our mind before
initiating this research. Since, CFG is best suited for
modeling system’s behavior by using proper
sequence of strings, while Z is an ideal one used for
describing state of a system. This distinct in nature
but supporting behavior of Z encouraged us to
integrate Z with CFG.

Most of the researchers have either taken
some examples in defining integration of approaches
or have addressed only some aspects of it. Further,
there is a lack of formal analysis supported by
computer tools. Our work is different from others
because we have given a generic approach to link Z
and CFG. A computer tool support is provided for
analysis and validation of this relationship as well.

Few benefits of using Z are: (i) Every object
is assigned a unique type providing useful
programming practice. (ii) Several type-checking
tools exist to support the specification. (iii) The
Z/Eves is a powerful free tool to prove and analyze
the specification. (iv) the rich mathematical notations
make it possible to reason about behavior of a
specified system effectively.

References
1. A. Hall, Correctness by Construction:

Integrating Formality into a Commercial
Development Process, Praxis Critical Systems
Limited, Springer, vol. 2391, pp. 139-157, 2002.

2. C. J. Burgess, The Role of Formal Methods in
Software Engineering Education and Industry,
University of Bristol, UK, 1995.

3. B. A. L. Gwandu and D. J. Creasey, The
Importance of Formal Specification in the
Design of Hardware Systems, School of
Electron. & Electr. Eng., Birmingham
University, 1994.

4. H. A. Gabbar, Fundamentals of Formal
Methods, Modern Formal Methods and
Applications, Springer, 2006.

5. H. Beek, A. Fantechi, S. Gnesi and F. Mazzanti,
State/Event-Based Software Model Checking,
Integrated Formal Methods, Springer, vol. 2999,
pp. 128-147, 2004.

6. O. Hasan and S. Tahar, Verification of
Probabilistic Properties in the HOL Theorem
Prover, Integrated Formal Methods, Springer,
vol. 4591, pp. 333-352, 2007.

7. F. Gervais, M. Frappier and R. Laleau,
Synthesizing B specifications from EB3
Attribute Definitions, Integrated Formal
Methods, Springer, vol. 3771, pp. 207-226,
2005.

8. K. Araki, A. Galloway and K. Taguchi,
Integrated Formal Methods, Proceedings of the
1st International Conference on Integrated
Formal Methods, Springer 1999.

9. B. Akbarpour and S. Tahar and A. Dekdouk,
Formalization of Cadence SPW Fixed-Point
Arithmetic in HOL, Integrated Formal Methods,
Springer, vol. 2335, pp. 185-204, 2002.

10. J. Derrick and G. Smith, Structural Refinement
of Object-Z/CSP Specifications, Integrated
Formal Methods, Springer, vol. 1945, 2000.

11. T. B. Raymond, Integrating Formal Methods by
Unifying Abstractions, Springer, vol. 2999,
2004.

12. J. S. Dong, R. Duke and P. Hao, Integrating
Object-Z with Timed Automata, pp 488-497,
2005.

13. J. S. Dong, et al., Timed Patterns: TCOZ to
Timed Automata, The 6th International
Conference on Formal Engineering Methods, pp
483-498, 2004.

14. R. L. Constable, P. B. Jackson, P. Naumov and
J. Uribe, Formalizing Automata II: Decidable
Properties, Cornell University, 1997.

15. R. L. Constable, P. B. Jackson, P. Naumov and
J. Uribe, Constructively Formalizing Automata
Theory, Foundations of Computing Series, MIT
Press, 2000.

16. M. Heiner and M. Heisel, Modeling Safety
Critical Systems with Z and Petri nets,
International Conference on Computer Safety,
Reliability and Security, Springer, pp. 361–374,
1999.

Life Science Journal 2012;9(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 993

17. X. He, Pz nets a Formal Method Integrating
Petri nets with Z, Information & Software
Technology, vol. 43(1), pp.1–18, 2001.

18. H. Leading and J. Souquieres, Integration of
UML and B Specification Techniques:
Systematic Transformation from OCL
Expressions into B, Asia-Pacific Software
Engineering Conference, 2002.

19. H. Leading and J. Souquieres, Integration of
UML Views using B Notation, Proceedings of
Workshop on Integration and Transformation of
UML Models, 2002a.

20. W. Wechler. The Concept of Fuzziness in
Automata and Language Theory, Akademic-
Verlag, Berlin, 1978.

21. N. M. John and S. M. Davender, Fuzzy
Automata and Languages: Theory and
Applications, Chapman & HALL, CRC, 2002.

22. D. Conrad and B. Hotzer, Selective Integration
of Formal Methods in the Development of
Electronic Control Units, Research Institute for
Automotive Engineering and Vehicle Engines,
1998.

23. M. Brendan and J. S. Dong, Blending Object-Z
and Timed CSP: An Introduction to TCOZ,
Proceedings of International Conference on
Software Engineering, 1998.

24. J. M. Spivey, The Z notation: A Reference
Manual, Englewood Cliffs, NJ, Printice-Hall,
1989.

25. D. P. Tuan, Computing with Words in Formal
Methods, University of Canberra, Australia,
2000.

26. J. P. Bowen, Formal Specification and
Documentation Using Z: A Case Study
Approach, International Thomson Computer
Press, 1996.

27. S. A. Vilkomir and J.P. Bowen, Formalization
of Software Testing Criterion, South Bank
University, London, 2001.

28. Mansoor, A. A., Khan, A. A.: Removing
Useless Productions of a Context Free Grammar
through Petri Net, Journal of Computer Science,
vol. 3 (7), pp. 494-498, 2007.

29. S.A. Khan and NA Zafar, Improving Moving
Block Railway System using Fuzzy Multi-
Agent Specification Language, Int. J. Innov.
Computing, Inform. Control, 7(7(B)):4517-34,
2011.

30. S.A. Khan and NA Zafar and F Ahmad, Petri
Net Modeling of Railway Crossing System
using Fuzzy Brakes, International J. Phy. Sci,
6(14): 3389-3397, 2011(a).

31. Zafar, N.A, Khan, S.A and Araki, K, Towards
the Safety Properties of Moving Block Railway
Interlocking System, Int. J. Innov. Computing,
Inform. Control, 8(8): 2012 .

32. S.A. Khan and NA Zafar, Extending promotion
for the management of moving block
interlocking components., International J. Phy.
Sci, 6(31), 7262-70. 2011(b).

33. S.A. Khan and NA Zafar, Promotion of Local to
Global Operation in Train Control System,
Journal of Digital Information Management
(page 228-233)., 2007.

34. F. Ahmad, SA Khan. Module-based
Architecture for Periodic job-Shop Scheduling
problem, Computers & Mathematics with
Applications, 64(1), 1-10, 2012.

35. G Ali, SA Khan, F Ahmad and Zafar, N.A,
Visualized and Abstract Formal Modeling
towards the Multi-Agent Systems, International
Journal of basic and Applied Sciences 2(8)8272-
8284, 2012

36. G Ali, SA Khan, F Ahmad and NA Zafar,
Formal Modeling towards a Dynamic
Organization of Multi-Agent Systems Using
Communicating X-Machine and Z-Notation,
Indian Journal of Science and Technology, Vol.
5 No. 7, 2012(a).

9/19/2012

