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Abstract: In this work, we study consider the problem of deieing the reliability of a series chain consigtiof k
identical links. The stress acting on the chaimléserministic. We consider the case of repeatedicapions of
stresses, i.e., cycles of stresses. We also cornsidehange of the distribution of strengths @& links with time,
i.e., during different cycles of stresses. We famdexpression of the reliability function after yties of stresses.
The strengths of the links of the chain could beloan- independent, random- fixed or determinidtfe introduce
a two-sided confidence interval for the reliabiliyss an application, the case of weibull distribatiis studied.
Finally the system is applied to simulated data f@ad data for numerical illustration.
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1. Introduction: models are frequently observed in practice. Sezal.

In stress — strength models a component failsyat an [10] discussed a time dependent stress-strengtkelsiod
time the applied stress X is greater than its gtrer for non-electrical and electrical systems. Furtremen
and there is no failure if Y > X. Thus P(Y > X) & Schartzet al. [11] studied an application of time
measure of the reliability of the component. dependent stress-strength models of non-electiwal

The problem of estimating R= P(Y > X) has been electrical systems. Xue and Yang [12] obtained
studied in the literature in both distribution fraed formula for estimating upper and lower bounds for
parametric frameworks. However in this paper we are stress — strength interference reliability whennd &
concerned with the parametric case. are s-independent normally distributed. Howevet, no

Church and Harris [1] derived the maximum too much work is done on time dependent models.
likelihood estimator (MLE) of R assuming X and Y Mokhles and Khayar [13] studied the time dependent
are independent normal and that the distributiotXof  stress- strength model with Rayleigh and exponkentia
is completely known. Downton [2] obtained the distributions.

MVUE of R in the case of independent normal where In this paper, we obtained an eipkxpression
the parameters of X and Y are unknown. Reiser and for the reliability function of a series consisting k
Guttman [3] presented two approximate methods for links after m cycles of stress. The repeated stiass
obtaining confidence intervals and an approximate our case, is deterministic. To derive the reliapil
Bayesian probability interval. Oweret al. [4] under three strength forms of the links of the whai
discussed the normal case for equal standard dmviat random- independent, random- fixed and determaisti
and presented non parametric confidence limitshiar As an application, Weibull distribution is considdr
problem, in addition to the normal case. The pnoble we find a two- sided confidence intervals for the
considered here has been extensively studied fayma reliability in case of random- independent and and
other models including exponential [5], Gamma [6] fixed strength. We apply our results in both sirtiola
and Burr distributions [7]. Nass&t al. [8] obtained study and real data.

confidence intervals for R= P(Y > X), where Y and X 2. Assumption and Notation.

follow Rayleigh and normal distribution distributi® 1- The system is a series chain consistinglivfks.
respectively. 2- The links are identical and independent.

If the stress and strength change with time, weital 3- The chain is subjected to cycles of common
time dependent stress- strength model. Kapur and repeated stresses. These stresses araifie m
Lamberson [9] stated that time dependent stress- cause to break the chain and are indep¢ndien
strength (SST) are models that consider the regdeat the strength of the links of the chain.
application of stresses and also, consider thegehah 4- The chain will break (falil) if the stress thre

the distribution of strength with time, which may chain exceeds the strength of the chaithier
caused by aging and/or cumulative damage. Such first time.
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5- The repeated stress acting on the chain is
deterministic, i.e., the stress during cycle
is given by, for allj, j =
1,2, ...,m,wherex, is known value.

6-Y;; is the strength of link during cyclej,
i=12..,k j=12,..,m

7- E; ; event that no failure occurs gifn
cycle.

8- Ry m is the reliability of the chain df
links aftenn cycles.

3. The System Reliability

Mokhles and Khayar [13] and Kapur and
Lamberson [9] discussed the reliability of the epst
assuming three different models .

Model I: Random-Independent
Strength
In this model, the strength dflink during thejt™®
cycle isa random variable , which denoted Yayi =
1,2,..,kandj=1,2,..,m, are non-identical
independent distributed random variables having c.d
Gij(y) and p.d.fg;(y). Since the chain consists of k
links connected in series, the strength of thercloai
thej™ cycle is given by
Y = min(Yy;, Y, ...,1}/{,(,.),
withc.df Gy = [1-G6GW].
The system reliability is
R =TT Pr (B ) = T Pr (%) > xo)

= T [1 - G(x0)]" (1)

Model II: Random-Fixed strength
In this model, the random variable of stréngt
varies in time (during cycle j) in a known mannieg,,

the strength of" link on thej™ cycle;; is given by

Yj=Yo—q, i=12.,k
j=12,..,m, 2)
whereY,, is the initial random strength of ttf& link,
anda; is a known non-decreasing function in j .
Assuming that;, are i.i.d, i= 1,2,...,k having c.d.f.
Go(y) and p.d.fg,(y), then the strength of the chain
during the™ cycle is

V=Y-q
where,

Yo = min(Y1o, Y20, -, Yro),
having c.df. Gy () = [1—Go(N)]".
Thus, the system reliability is

Rim = Pr(Ek,m) = K.Yy > xo)
= [1 = Golxo + ap)]*.

@)

(4)
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Model Ill: Deterministic Strength
In this model, the strength 8flink on thejt™
cycle is deterministic given byy; , 1<i<k ;
1<j<m. Since the chain consists of k links
connected in series, the strength of the chairhej't
cycle will be
Y’ = min(ylj,yzj, ...,ykj).
Since,
Rym = Pr(Ek,liEk,Z' '-"Ek,m) '
where E,, ; is the event thay; > x,), we get
Rk,m
1 ifyi >x forall j, 1<j<m
{0 if yj <xo forsome j, 1<j<m.
Remarks.
1. Taking k= 1, we obtain the reliability of an rite
after m cycles of stress.
2. Takinga,, = 0, we obtain the reliability of the
system in the static case.

4. Confidence Intervals for System
Reliability.
We obtain confidence intervals (C.l.) fos®m
reliability under Models | and Il in consideringet
Weibull distribution.

For Weibull distribution, the distribution functios
14

G)=1-€77, y>0, p 6>0 (5)
Assume that
Gi(y)=1—exp (— %) for Model I,
Go(y) =1—exp (— ’;—p), for Model II.
0
Using Equations (1) and (4), we obtain
_[ e knx for Model I
Rem = {e'k Mo (Xo+am)®, for Model 11, ©
1 1
wheren = Z}”zlg—j andn, = =

If the parameters, and 6;, j=1, 2,..., m are known,
then by equation (6), we obtain the exact religpili
If the parameter§, and 6;, j=1, 2,..., m are unknown,

we can then replace these parameters by their MLEs,

to get MLE, R, of R, for the two models as
follows

—kD xP’
ﬁ = e E for Model I 7
om { e k7o otam)®. for Model 11, (7)
P
A 1 n 1 ~ y g
where 7 = Z}’;la—j and flo =5 6= Z?gln_c;
9P
and 6; = ;7 29, pis known parameter.

1y
Let Vit Yjzs s Vin; and Y1, Yoz, -+ Yon, D€ random
samples of sizes; andn, drawn fromgG;(y), j=1,
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2,..., m, andG,(y) respectively. For simplicity, we
shall sety; = n.

It can be easily shown tha, j=1, 2, ..., m and),

. . . 6;
have Gamma distribution with paramete(ns,;’),

J

2n§-> i
v
8j

=12, ..., m anc(no, )respectwely, (

1,2,..,m and(z’;"e") have a Chi-square distribution
0

with n and n, degrees of freedom respectively,

therefore
2
E(8;) =6 var (6;) = 7’
E(éo) = 90, var (90) = n_o.
DefineW; = 8, — 6;,j=1,2,..., mand/ = §, — 6,.

It is clear thatW;, j= 1,2,.., m and U are
asymptotically normally distributed with zero means

92
and variance aé— , respectively.

Therefore R, ,,, can be rewritten as:
Rym =

D_x
“kxXoj | from Model I

jeie
(8)
e—k(xo+am)p”3, from Model 11,

where n; = andng =

m — —

j=1 W]'+91' U+90.

Using Taylor’'s expansion and Equation (8), we imbta
ﬁk,m =

j Rim + k X§ Ry X7 192x+ R,, from Model I

lem + =k (xo + am PRi U + Ry, from Model 11,
)

whereR; andR, are remainder terms.

For the models | and IlIR,,, are asymptotically

normal with meang,, ,,, as given by Equation (6), and
variances

o5 =
Ri,m

(k x§ Rim)* T from Model I

92’
1(k
g(9—0(3504-017,1 )p) R% m, from Model I1.

(10)
HenceRk,m in (7) is a consistent estimator Ry ,,,.

4.1. Two- Sided Approximate Confidence
Interval for Ry,
Since ﬁk,m in (7) is asymptotically normal with
meankR, ,, and variance given by Equation (10), thus a
two-sided approximate (1 -0)100% confidence
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intervals ofRy,, for the two models are obtained by
Pr {Ricm = Za/2 Opye < Ricm
< ﬁk'm = Zg)2 &ﬁk'm}= 1-a (11)
where R, ., is given by (7)Pr(Z > z,/,) = a/2 and
Z has a standard normal distribution,

aﬁk,m -

(k x5 Rim)? from Model I

m 1
=1n_gg:
v ) (12)
—(a (xo + ap )”) RZ,, from Modelll.

No
4.2. Exact Two- Sided Confidence

Interval for Ry,

060

. 2nd; . 2100
Smce,(g—j), j=1,2,..,mand (—90 ) have

a Chi-square distribution witbn and2n, degrees of
freedom respectively. Thus, the two-sided approtéma
(1 — a)100% confidence intervals @t ,, for the two
models are obtained by:

For Model |

2n;
PF{X(Zn ) <5 9 <X(2n 1- a)} =1-

Pr{exp( kxg X7y )((2’;—19]“)) < Rgm <
exp <—kxg Z;’lez(z—%’;)>}= 1-—a. (13)
For Model Il

2 2ng . 5 _
PraXieng, @ < 9_090 < X@enpi-a){ =

X(Zno 1-a@)

Pr {exp (— k(xg + a,)P -~ ) <Rym <
0

exp( k (xo + a,)? X(Zn" :) ) } =1-a, (14)

wherel — ¢ is the confidence coefficient.

When p=1 and p=2, we get the exponential and
Rayleigh cases, respectively, which are discussed i
[13].

5. Special Case
If the strength of link, i=1,2,...,k, during

repeated cycles of stress are independent butidgdént
random variables, we have in Modelz}(y) = G(y)
for all j. Then equation (1) becomes

Rim = [1=G(xp)]*™ . (15)
For Weibull distribution, using Equations (5)- (We
obtain
—kmxo/G

Rym=ce (16)
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ka e—kmxo/e
where 8 —; APV R A

drawn from G(y) in (5).
Also,

1 kmx?
O =7 g ) Rim (18)

Therefore, an exact two-sided (&)100% confidence
interval forRy, ,,, is given by

Pr {exp< km xpm> < Rgm <

(17)
is a random sample

2no

exp( km x§ (Zn “))} =1-a. (19

For Model IlI, puttinga; = 0 in Equations (2-3), we
return to the static case. Hence
Yij = YiO ’

When p=1 and p=2, we obtain the exponentidl a
Rayleigh cases which are discussed in [13].

6. lllustrative Examples and
Simulation Study.
Example 1. Simulated Data.

A simulation study is made by taking the average
of 1000 generated samples drawn from Weibull
distribution with parameter8, = 10000, 8, = 8000
andd, = 9000 while for the identical case, we take
01 =06, =9000 . Rym , Rim . 64, . exact and
approximate (1 &)100% confidence interval (C.1.) for
Model | and Model Il are calculated and presented i
Tables 1-9. For simplicity, we take k=1, m=2, a30.0
a, =am, p=3 and x,=10. The results are
presented in Tables 1-9.

Y =Yg = min(Yyg, Yo, -, Yeo), Table 1  Non-ldentical Random Independent
and ka = [1-=Go(x)]¥. StrengthR,, = 0.798516
: = — = =
Therefore, for Weibull dlstrlbunon, we get n 0, 0, R1,2 6
5 10127 8102 0.7667 0.00430
kb kxf 15 09966 7973 0.7869 0.00122
Rem = e %o | ﬁkm =e 0o, and 25 10150 8120 0.7943 0.00065
50 10048 8038 0.7962 0.00034
52 = (" "0) ( K )2 75 10004 8003 0.7964 0.00022
Riem = m 100 10028 8023 0.7974 0.00017
250 09974 7979 0.7975 0.00007
Table 2. Approximate C.I. foR; , in case Non-ldentical Random Independent Strength
1-y 0.90 0.95 0.99
n C. L D C. L D C. L D
5 (0.6637,0.8697) 0.2060 (0.6444, 0.8890) 0.2447 0.6067, 0.9277) 0.3220
15 (0.7303,0.8436) 0.1133 (0.7196, 0.8542) 0.1346 (0.6984, 0.8755) 0.1771
25 (0.7516,0.8370) 0.0854 (0.7436, 0.8451) 0.1015 (0.7275, 0.8611) 0.1336
50 (0.7661,0.8262) 0.0601 (0.7605, 0.8319) 0.0714 (0.7492, 0.8432) 0.0940
75 (0.7718, 0.8209) 0.0491 (0.7672, 0.8255) 0.0583 (0.7580, 0.8348) 0.0767
100 (0.7763,0.8186) 0.0423 (0.7723, 0.8226) 0.0503 (0.7644, 0.8306) 0.0662
250 (0.7840,0.8108) 0.0268 (0.7815, 0.8133) 0.0318 (0.7764, 0.8183) 0.0419
Table 3. Exact C.I. foR , in case Non-ldentical Random Independent Strengt
1—y 0.90 0.95 0.99
n C. I D C. I D C. I D
5 (0.6597, 0.8765) 0.2168 (0.6233, 0.8983) 0.2750 (0.5541, 0.9324) 0.3783
15 (0.7257, 0.8479) 0.1222 (0.7059, 0.8622) 0.1563 (0.6676, 0.8869) 0.2193
25 (0.7479, 0.8405) 0.0926 (0.7333, 0.8518) 0.1185 (0.7049, 0.8719) 0.1670
50 ((0.7634, 0.8288) 0.0654 (0.7533, 0.8372) 3008 (0.7340, 0.8523) 0.1183
75 (0.7696, 0.8230) 0.0534 (0.7615, 0.8300) 0.0685 (0.7460, 0.8428) 0.0968
100 (0.7744, 0.8205) 0.0461 (0.7674, 0.8266) @059 (0.7541, 0.8377) 0.0836
250 (0.7828, 0.8120) 0.0292 (0.7784, 0.8159) ®037 (0.7703, 0.8233) 0.0530
Table 4. Random —Fixed Strengf,, = 0.894242
n 6 R 62
0 1,2
5 9051 0.872905 0.00318343
15 9054 0.887508 0.00078603
25 9018 0.890439 0.00043954
50 8866 0.890785 0.00021521
75 8965 0.892493 0.00013871
100 8965 0.892945 0.00001029
250 8984 0.893692 0.00004047

2322




Life Science Journal 2012;9(3) http://www.lifesciencesite.com

Table 5. Approximate C.I. faR; , in case Random —Fixed Strength

1y 0.90 0.95 0.99

n C.I. D C.I. D C.I. D

5 (0.7870, 0.9588) 0.1718 (0.7709, 0.9749) 0.2040 (0.7386, 1.0072) 0.2686
15 (0.8426, 0.9324) 0.0898 (0.8342, 0.9408) 0.1067 (0.8173, 0.9577) 0.1404
25 (0.8564, 0.9244) 0.0680 (0.8500, 0.9308) 0.0808 (0.8373, 0.9436) 0.1063
50 (0.8668, 0.9148) 0.0480 (0.8623, 0.9193) 0.0570 (0.8532, 0.9283) 0.0751
75 (0.8732, 0.9118) 0.0386 (0.8695, 0.9154) 0.0459 (0.8623, 0.9227) 0.0604
100 (0.8762, 0.9096) 0.0333 (0.8731, 0.9127) 6039 (0.8669, 0.9190) 0.0521
250 (0.8832, 0.9042) 0.0210 (0.8812, 0.9061) ®024 (0.8773,0.9101) 0.0328

Table 6. Exact C.I. foR, , in case Random —Fixed Strength

1y 0.90 0.95 0.99

n C.1. D C.1. D C.1. D

5 (0.8066, 0.9354) 0.1288 (0.7826, 0.9472) 0.1646 (0.7348, 0.9653) 0.2305
15 (0.8523,0.9212) 0.0689 (0.8405, 0.9289) 0.0884 (0.8173, 0.9421) 0.1248
25 (0.8637, 0.9162) 0.0525 (0.8551, 0.9224) 0.0673 (0.8382, 0.9333) 0.0951
50 (0.8720, 0.9091) 0.0371 (0.8661, 0.9138) 0.0477 (0.8547, 0.9221) 0.0674
75 (0.8774,0.9073) 0.0299 (0.8727,0.9111) 0.0384 (0.8638, 0.9181) 0.0543
100 (0.8799, 0.9058) 0.0259 (0.8759, 0.9091) @033 (0.8683, 0.9152) 0.0469
250 (0.8855, 0.9018) 0.0163 (0.8831, 0.9040) ®020 (0.8785, 0.9080) 0.0295

Table 7. Identical Random Independent Stremjth= 0.800737 and@; = 6, = 9000.

n i Ri 6%
5 9170 0.77027 0.00419
15 8917 0.78827 0.00120
25 9095 0.79528 0.00067
50 9008 0.79764 0.00033
75 9021 0.79896 0.00022
100 8991 0.79906 0.00016
250 9016 0.80040 0.00006
Table 8. Approximate C.I. fak; , in case Identical Random Independent Strength
1-y 0.90 0.95 0.99
n C. L D C. I D C. L D
5 (0.6687, 0.8719) 0.2032 (0.6496, 0.8909) 0.2413 (0.6114, 0.9291) 0.3177
15 (0.7323, 0.8443) 0.1120 (0.7217, 0.8548) 0.1331 (0.7007, 0.8758) 0.1751
25 (0.7530, 0.8375) 0.0845 (0.7451, 0.8455) 0.1004| (0.7292, 0.8614) 0.1322
50 (0.7679, 0.8273) 0.0594 (0.7624, 0.8329) 0.0705 (0.7512, 0.8441) 0.0929
75 (0.7748, 0.8231) 0.0483 (0.7703, 0.8276) 0.0573| (0.7612, 0.8366) 0.0754
100 (0.7782, 0.8199) 0.0417 (0.7742, 0.8238) B049 (0.7664, 0.8317) 0.0653
250 (0.7873, 0.8136) 0.0263 (0.8812, 0.9061) @024 (0.7799, 0.8210) 0.0411

Table 9. Exact C.I. foR; , in case Identical Random Independent Strength

1y 0.90 0.95 0.99

n C.1. D C.1. D C.1. D

5 (0.6639, 0.8789) 0.2150 (0.6275, 0.9004) 0.2729] __ (0.5585, 0.9339) 0.3754
15 (0.7274, 0.8489) 0.1215 (0.7077, 0.8632) 0.1555 _ (0.6695, 0.8877) 0.2182
25 (0.7491, 0.8412) 0.0921 (0.7344, 0.8525) 0.1181 _ (0.7062, 0.8725) 0.1663
50 (0.7651, 0.8300) 0.0649 (0.7551, 0.8384) 0.0833 (07358, 0.8534) 0.1176
75 (0.7724, 0.8253) 0.0529 (0.7644, 0.8322) 0.0678 __ (0.7490, 0.8448) 0.0958
100 (0.7761, 0.8219) 0.0458 (0.7692, 0.8280) 058 (0.7560, 0.8390) 0.0830
250 (0.7859, 0.8148) 0.0289 (0.7817, 0.8187) @037 (0.7736, 0.8259) 0.0523

Example 2. Real Data.
As an another example we choose the real datagedged by Lawless [14] (1982, p. 185) and Neldd, [
referring to which the time breakdown of an insmigtfluid between electrodes at a voltage of 36(k\Wnutes), 32

kV (minutes) and 30 kV (minutes). The data showloweare breakdown times for 3 groups of specimeash
group involving a different voltage level.

Voltage Level (kV) n d&kdown Times
36 15 91, 0.59, 2.58, 1.69, 2.71, 25.50, 0.35, 0.99,,3.99
3.67, 2.07,0.96, 5.35, 2.90, 13.77}
32 15 40, 82.85, 9.88, 89.29, 215.10, 2.75, 0.79, 15.93,
3.91, 0.27, 0.69,100.58, 27.80,13.95, 53.24};
30 11 {@3, 22.66, 21.02, 175.88,139.07,144.12, 20.46,

43.40, 194.90, 47.30, 7.74}
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A models suggested by engineering The computations in this example are done with k=1,

consideration are that, for a fixed voltage letiehe m=2, a= 0.01¢,, = a.m, p=3,x, = 10,

to breakdown have a Weibull distributions. 6,=100009, = 8000 andf, = 9000, n, =n, =
Furthermore, distributions corresponding to diffare 15,ny = 11, R, , = 0.798516 for Model | and
voltage levels are thought to differ only with resp Ry, = 0.894242 for Model II.

to their scale parameters, the shape parameteg bein  The results are presented in Tables 10-12.
the same for different levels.

Table 10.8;, 6,, 6o, Ry, and 3 in case Non-Identical Random Independent Strength
Ry, g’

6 0, 0o Model | Model |1 Model | Model Il
1303 828701 170452 0.46360 0.99941 0.00844 0.0@0000

Table 11. Approximate C.I. @&, , in case Non-ldentical Random Independent Strength

1y 0.90 0.95 0.99
Model C. L D C. L D C. L D
| (0.3120, 0.6152) 0.3032 (0.2835, 0.6437) 01360 | (0.2266, 0.7006) 0.4740
I ((0.9991, 0.9997) 0.0006 (0.9991, 0.9998) 0007 (0.9990, 0.9999) 0.0009
Table 12. Exact C.I. faR, , in case Non-ldentical Random Independent Strength
1-y 0.90 0.95 0.99
Model C. L D C. L D C. L D
I (0.3565, 0.5899) 0.2334 (0.3257, 0.6226) 0.2969 (0.2714, 0.6817) 0.4103
Il (0.9992, 0.9996) 0.0004 (0.9991, 0.9997) 0.0006 (0.9990, 0.9997) 0.0007
7. Conclusions [4] Owen, D.B., Craswell, K.J. and Hanson, D.L. §42 Non
In this paper we presented the problem of parametric upper confidence bounds for P(Y < X) and

L T . . . confidence limits for P(Y < X) when X and Y are nwal.
determining the reliability of a series chain catisig JASA, 29, 906-924.

of k identical likes. Our computational results @er [5] Sath, Y. and Shah, S.P. (1981). On estimatif¥) ®Y) for the
computed by using Mathematica 8.0. Our observation exponential distribution. Commun Statist. Theord &hethods,

; ; ; 10(1), 39-47.
co_nce.rmng the results are stated in the following [6] Constantine, K. and Karson, M. (198Bstimation of P(Y<X) in
points: Gamma case. Commun Statist. Simula. and Compuoédfi

1- From Tables (1), (4) , (7) and (10), we see that  15(2), 365-388.
ARk'm the Burr case: A comparative study. Commun Stdfishula.
Ry . is consistent estimator @ty ;. and Computational, 15(2), 389- 403.

2- From another Tables, we see thatthe lenfgtheo ~ [8] Nassar, M.M., El Sayed, A.S. and Shawky, A. [1998).

. . . Confidence intervals for the stress- strengthabdity model.
C.l.s decreases by increasing the sample size. Far East J. Theor. Stat, 2(2), 115-122,

3- We find tha'rﬁl_2 under Model Il is greater than that [9] Kapur, K.C. and Lamberson L.R. (1977). Reliapilin
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