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Abstract: In this work, we study consider the problem of determining the reliability of a series chain consisting of k 
identical links. The stress acting on the chain is deterministic. We consider the case of repeated applications of 
stresses, i.e., cycles of stresses. We also consider the change of the distribution of strengths of the links with time, 
i.e., during different cycles of stresses. We find an expression of the reliability function after m cycles of stresses. 
The strengths of the links of the chain could be random- independent, random- fixed or deterministic. We introduce 
a two-sided confidence interval for the reliability. As an application, the case of weibull distribution is studied. 
Finally the system is applied to simulated data and real data for   numerical illustration. 
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1. Introduction: 

In stress – strength models a component fails at any 
time the applied stress X is greater than its strength Y 
and there is no failure if Y > X. Thus P(Y > X) is a 
measure of the reliability of the component. 
    The problem of estimating R= P(Y > X) has been 
studied in the literature in both distribution free and 
parametric frameworks. However in this paper we are 
concerned with the parametric case. 

Church and Harris [1] derived the maximum 
likelihood estimator (MLE) of R assuming X and Y 
are independent normal and that the distribution of X 
is completely known. Downton [2] obtained the 
MVUE of R in the case of independent normal where 
the parameters of  X and Y are unknown. Reiser and 
Guttman [3] presented two approximate methods for 
obtaining confidence intervals and an approximate 
Bayesian probability interval. Owen et al. [4] 
discussed the normal case for equal standard deviation 
and presented non parametric confidence limits for this 
problem, in addition to the normal case. The problem 
considered here has been extensively studied for many 
other models including exponential [5], Gamma [6] 
and Burr distributions [7]. Nassar et al. [8] obtained 
confidence intervals for R= P(Y > X), where Y and X 
follow Rayleigh and normal distribution distributions 
respectively. 
If the stress and strength change with time, we call it 
time dependent stress- strength model. Kapur and 
Lamberson [9] stated that time dependent stress- 
strength  (SST) are models that consider the repeated 
application of stresses and also, consider the change of 
the distribution of strength with time, which may 
caused by aging and/or cumulative damage. Such 

models are frequently observed in practice. Shaw et al. 
[10] discussed a time dependent stress-strength models 
for non-electrical and electrical systems. Furthermore, 
Schartz et al.  [11] studied an application of time 
dependent  stress-strength models of non-electrical and 
electrical systems.  Xue and Yang [12] obtained 
formula for estimating upper and lower bounds for 
stress – strength interference reliability when X and Y 
are s-independent normally distributed. However, not 
too much work is done on time dependent models. 
Mokhles and Khayar [13] studied the time dependent 
stress- strength model with Rayleigh and exponential 
distributions. 

                In this paper, we obtained an explicit expression 
for the reliability function of a series consisting of k 
links after m cycles of stress. The repeated stress, in 
our case,  is deterministic. To derive the reliability 
under three strength forms of the links of the chain: 
random- independent, random- fixed and deterministic. 
As an application, Weibull distribution is considered.  
we find a two- sided confidence intervals for the 
reliability in case of random- independent and random 
fixed strength. We apply our results in both simulation 
study and real data. 
2. Assumption and Notation.  
   1- The system is a series chain consisting of k links. 
   2- The links are identical and independent. 
   3- The chain is subjected to cycles of common    
        repeated stresses. These stresses are the main     
        cause to break the chain and are independent of  
        the strength of the links of the chain. 
   4- The chain will break (fail) if the stress on the   
        chain exceeds the strength of the chain for the  
        first time. 
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5- The repeated stress acting on the chain is  
    deterministic, i.e., the stress during cycle �  
     is given by ��, for all �, � � 
     1, 2, … , 	, where �� is known value.   
6- ��
 is the strength of link � during cycle �,   
     � � 1, 2, … , �, � � 1, 2, … , 	. 
7- ��,
 event that no failure occurs on �th  
     cycle. 
8- ��,� is the reliability of the chain of �  
    links after 	 cycles. 

 
3. The System Reliability 

            Mokhles and Khayar [13] and Kapur and 
Lamberson [9] discussed the reliability of the system 
assuming three different models . 

 
     Model I: Random-Independent     
                     Strength 
     In this model, the strength of i��link during the j�� 
cycle is a random variable , which denoted by Y��, i �1,2, … , k and j � 1,2, … , m,  are non-identical 
independent distributed random variables having c.d.f !
"#$ and p.d.f %
"#$. Since the chain consists of k 
links connected in series, the strength of the chain on 
the j�� cycle is given by 
                       �
& � 	�'(�)
 , �*
 , … , ��
+, 

with c.d.f        !,-&"#$ �  .1 / !
"#$0�. 
The system reliability is 
     ��,� � ∏ Pr�
4) (��,
+ � ∏ Pr�
4) (�
& 5 ��+ 

               �  ∏ .1 / !
"��$0��
4) .                      (1) 
 
Model II: Random-Fixed strength 
      In this model, the random variable of strength 
varies in time (during cycle j) in a known manner, i.e., 
the strength of i�� link on the j�� cycle Y�� is given by  
 
    ��
 �  ��� / 6
  ,   � � 1, 2, … , �;     
                     � � 1, 2, … , 	,                              (2) 
where Y�� is the initial random strength of the i�� link, 
and 6
 is a known non-decreasing function in j . 
Assuming that ���  are i.i.d, i= 1,2,…,k having c.d.f. !�"#$ and p.d.f. %�"#$, then the strength of the chain 
during the j�� cycle is  
        �
& � ��& /  6
 ,                                           (3) 
where,                          
         ��& � 	�'"�)� , �*�, … , ���$, 
having c.d.f.     !,8&"#$ �  91 / !�"#$:� . 
Thus, the system reliability is 
      ��,� �  ;<(��,�+ � ;<"��& 5 ��$ 
               �  91 / !�"�� = 6�$:� .                   (4) 
 
 

 
Model III: Deterministic Strength 
      In this model, the strength of i�� link on the j�� 
cycle is deterministic given by y�� , 1 ? � ? �  ; 1 ? � ? 	 . Since the chain consists of k links 
connected in series, the strength of the chain on the j�� 
cycle will be 
        �
& � 	�'(#)
 , #*
 , … , #�
+. 
Since,                  
        ��,� �  ;<(��,), ��,*, … , ��,�+ , 
where, ��,
  is the event that (#
& 5 ��+, we get        
    ��,� 

                                     @ 1   �A #
& 5 ��         ABC 6DD  �,   1 ? � ? 	0      �A #
& F ��   ABC GB	H  �, 1 ? � ? 	.I 
Remarks. 
1. Taking k= 1, we obtain the reliability of   an  item 

after m cycles of stress. 
2. Taking 6� � 0 , we obtain the reliability of the 

system in the static case. 
 
4. Confidence Intervals for System 

Reliability. 
       We obtain confidence intervals (C.I.) for system 
reliability under Models I and II in  considering the 
Weibull distribution. 

 
For Weibull distribution, the distribution function is   

     !"#$ �  1 / HJKLM ,      # 5 0,   N, O 5 0          (5) 
Assume that  

    !
"#$ � 1 / H�N P/ QLR- S,  for Model I, 

    !�"#$ � 1 / H�N T/ QLR8 U,  for Model II. 

Using Equations (1) and (4), we obtain  
 

      ��,� � @    HJ� V W8L,          for Model I  HJ� V8 "W8^_`$L,   for Model II,I          (6) 

where  a � ∑ )R-�
4)    and  a� � )R8. 
If the parameters O�  and  O
, j=1, 2,…, m are known, 
then by equation (6), we obtain the exact reliability . 
If the parameters O� and  O
, j=1, 2,…, m are unknown, 
we can then replace these parameters by their MLEs, 
to get MLE, �c�,�  of ��,�  for the two models as 
follows 

     �c�,� � @HJ� Vd  W8L,                     for Model I      HJ� Vd8 "W8^_`$L,   for Model II, I   (7)   

where  â � ∑ )Rf-�
4)    and  â� � )Rf8.   Oc� �  ∑ Q8gL
h8h8�4)     

and   Oc
 �  ∑ Qg-Lh-
h-�4) ,  p is known parameter. 

Let  #
), #
*, … , #
h- and  #�), #�*, … , #�h8  be random 

samples of  sizes '
  and '�  drawn from !
"#$,  j=1, 
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2,…, m, and !�"#$  respectively. For simplicity, we 
shall set '
 � '. 
It can be easily shown that Oc
 , j=1, 2, …, m and Oc� 

have Gamma distribution with parameters T', R-h U,  
j=1,2, …, m and T'�, R8h8U respectively, or P*hRf-R- S , � �
1, 2, … , 	 and T*h8Rf8R8 U, have a Chi-square distribution 

with '  and '�  degrees of freedom respectively, 
therefore  

     �(Oc
+ � O
,        i6C (Oc
+ �  R-jh . 

     �(Oc�+ � O�,        i6C (Oc�+ �  R8jh8. 

Define k
 �  Oc
 /  O
, j= 1,2,…, m and l �  Oc� /  O� . 
It is clear that k
,  j= 1,2,…, m and U are 
asymptotically normally distributed with zero means 

and variance as 
R-jh  , R8jh8 , respectively. 

Therefore, �c�,� can be rewritten as:    �c�,� � 

     m∏ HJ�W8LV-&�
4) , ACB	 nBoHD p      
HJ�"W8^_`$LV8& , ACB	 nBoHD pp, I                (8)                                  

where   a
& � ∑ )q-^R-�
4)   and  a�& � )r^R8 . 
 Using Taylor’s expansion and Equation (8), we obtain 
         �c�,� � 
   

stu
tv ��,� = � ��w ��,� ∑ q-R-j�
4) � =  x), ACB	 nBoHD p      

��,� = )R8j � "�� = 6� $w��,�l = x*, ACB	 nBoHD pp,I      
                                                                             (9)         
where x) and x* are remainder terms. 
For the models I and II, �c�,�  are asymptotically 
normal with means ��,� as given by Equation (6),  and 
variances       
   yzc{,`* � 

m "� ��w ��,�$* ∑ )h-R-j�
4) , ACB	 nBoHD p   
)h8 T �R8 "�� = 6�  $wU* ��,�* , ACB	 nBoHD pp.I                                   

                                                                            (10) 
Hence, �c�,� in (7) is a consistent estimator of ��,�. 
 
4.1. Two- Sided Approximate Confidence  
        Interval for  |},~ 
    Since �c�,�  in (7) is asymptotically normal with 
mean ��,� and variance given by Equation (10), thus a 
two-sided approximate (1 - α)100% confidence 

intervals of ��,�  for the two models are obtained by     Pr ��c�,� / zα/* y�zc{,` F ��,� 

                 F �c�,� / zα/* y�zc{,`} � 1 / �,       (11) 

where  �c�,� is given by (7), Pr(Z 5 zα/*+ � α/2 and 
Z has a standard normal distribution,    y�zc{,`* �    

m "� ��w �c�,�$* ∑ )h-R-j�
4) ,    ACB	 nBoHD p   
)h8 T �R8 "�� = 6�  $wU* �c�,�*     ACB	 nBoHD pp.I (12) 

 
4.2. Exact Two- Sided Confidence  
        Interval for  |},~ 

          Since, P*h Rf-R- S , � � 1, 2, … , 	 and  T*h8Rf8R8 U have 

a Chi-square distribution with 2' and 2'�  degrees of 
freedom respectively. Thus, the two-sided approximate "1 / �$100% confidence intervals of ��,� for the two 
models are obtained by: 
 
For Model I Pr @�(*h- ,�+* F 2'
O
 Oc
 F �(*h- ,)J �+* � � 1 / �, 

                                    

        Pr �exp P/ ���w ∑ �"j�,��  �$j
*h Rf-�
4) S F ��,� F

                 exp P/ � ��w  ∑ �"j�,�$j
*h Rf-�
4) S � � 1 / �.      (13) 

                                           
For Model II 
 Pr ��"*h8,   �$* F 2'�O� Oc� F �"*h8,)J�$* � � 

  

     Pr �exp P/ �"�� = 6�$w �"j�8,   ���$j
*h8Rf8  S F ��,� F

           exp P/ � "�� = 6�$w �"j�8,�$j
*h8Rf8  S � � 1 / �,   (14)  

                                              
where 1 / �  is the confidence coefficient. 
     When p=1 and p=2, we get the exponential and 
Rayleigh cases, respectively, which are discussed in 
[13].  
 
5. Special Case 
         If the strength of link � , � � 1, 2, … , � , during 
repeated cycles of stress are independent but identical 
random variables, we have in Model I, !
"#$ � !"#$ 
for all �. Then equation (1) becomes 
      ��,� � 91 / !"��$:�� .                                   (15)   
For Weibull distribution, using Equations (5)- (7), we 
obtain 

        ��,� � HJ��W8L/R,                                           (16) 
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       �c�,� � HJ��W8L/Rf ,                                        (17) 

where  Oc � )h ∑ #�wh�4) , #), … , #h   is a random sample 

drawn from G(y) in (5). 
Also,  

         yzc{,`* � )h "��W8LR $*��,�* .                               (18) 

Therefore, an exact two-sided (1 - α)100% confidence 
interval for ��,� is given by              Pr �exp �/ �	 ��w �"*h,   )J �$*2' Oc � F ��,� F 

                 exp P/ �	 ��w �"j�,   �$j
*h Rf S� � 1 / �.      (19)         

       
For Model II, putting 6
 � 0 in Equations (2-3), we 
return to the static case. Hence 
           ��
 �  ��� ,       
           �
& � ��& �  	�'"�)�, �*�, … , ���$, 
and      ��,� �  91 / !�"��$:� .   
Therefore, for Weibull distribution, we get  
 

     ��,� � HJ{ �8�M8  ,    �c�,� � HJ{ �8�Mf8 ,        and     

     y�zc{,`* � )h8 "� W8�Rf8 $*"�c�,�$*.   

      When p=1 and p=2, we obtain the exponential and 
Rayleigh cases which are discussed in [13]. 
 
6. Illustrative Examples and  
    Simulation Study. 
     Example 1. Simulated Data. 
        A simulation study is made by taking the average 
of 1000 generated samples drawn from Weibull 
distribution with parameters O) � 10000, O* � 8000 
and O� �  9000  while for the identical case, we take O) � O* � 9000 . ��,� , �c�,� , y�zc{,`* , exact and 

approximate (1 - α)100% confidence interval (C.I.) for 
Model I and Model II are calculated and presented in 
Tables 1-9. For simplicity, we take k=1, m=2, a=0.01, 6� � 6. 	 , p=3 and  �� � 10.  The results are 
presented in Tables 1-9. 
 
Table 1.  Non-Identical  Random Independent 
Strength, �),* � 0.798516 
n Oc) Oc* �c),* y�* 
5 10127 8102 0.7667 0.00430 
15 09966 7973 0.7869 0.00122 
25 10150 8120 0.7943 0.00065 
50 10048 8038 0.7962 0.00034 
75 10004 8003 0.7964 0.00022 
100 10028 8023 0.7974 0.00017 
250 09974 7979 0.7975 0.00007 

 

Table 2. Approximate C.I. for  �),* in case Non-Identical  Random Independent Strength.  1 / � 0.90 0.95 0.99 
n C. I.  D C. I. D C. I. D 
5 (0.6637,0.8697)  0.2060 (0.6444, 0.8890) 0.2447 (0.6057, 0.9277) 0.3220 
15 (0.7303,0.8436)  0.1133 (0.7196, 0.8542) 0.1346 (0.6984, 0.8755) 0.1771 
25 (0.7516,0.8370)  0.0854 (0.7436, 0.8451) 0.1015 (0.7275, 0.8611) 0.1336 
50 (0.7661,0.8262)  0.0601 (0.7605, 0.8319) 0.0714 (0.7492, 0.8432) 0.0940 
75 (0.7718, 0.8209)  0.0491 (0.7672, 0.8255) 0.0583 (0.7580, 0.8348) 0.0767 
100 (0.7763,0.8186)  0.0423 (0.7723, 0.8226) 0.0503 (0.7644, 0.8306) 0.0662 
250 (0.7840,0.8108)  0.0268 (0.7815, 0.8133) 0.0318 (0.7764, 0.8183) 0.0419 

 

Table 3. Exact C.I. for �),* in case Non-Identical  Random  Independent Strength.  1 / � 0.90 0.95 0.99 
n C. I.  D C. I. D C. I. D 
5 (0.6597, 0.8765)  0.2168 (0.6233, 0.8983) 0.2750 (0.5541, 0.9324) 0.3783 
15 (0.7257, 0.8479)  0.1222 (0.7059, 0.8622) 0.1563 (0.6676, 0.8869) 0.2193 
25 (0.7479, 0.8405)  0.0926 (0.7333, 0.8518) 0.1185 (0.7049, 0.8719) 0.1670 
50 ( (0.7634, 0.8288)  0.0654 (0.7533, 0.8372) 0.0839 (0.7340, 0.8523) 0.1183 
75 (0.7696, 0.8230)  0.0534 (0.7615, 0.8300) 0.0685 (0.7460, 0.8428) 0.0968 
100 (0.7744, 0.8205)  0.0461 (0.7674, 0.8266) 0.0592 (0.7541, 0.8377) 0.0836 
250 (0.7828, 0.8120)  0.0292 (0.7784, 0.8159) 0.0375 (0.7703, 0.8233) 0.0530 

 
Table 4. Random –Fixed Strength, �1,2 � 0.894242 

 
 

n Oc� �c),* y�*
 

5 9051 0.872905 0.00318343 
15 9054 0.887508 0.00078603 
25 9018 0.890439 0.00043954 
50 8866 0.890785 0.00021521 
75 8965 0.892493 0.00013871 
100 8965 0.892945 0.00001029 
250 8984 0.893692 0.00004047 
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Table 5. Approximate C.I. for �1,2 in case Random –Fixed Strength 

1- � 0.90 0.95 0.99 
n C. I.  D C. I. D C. I. D 
5 (0.7870, 0.9588)  0.1718 (0.7709, 0.9749) 0.2040 (0.7386, 1.0072) 0.2686 
15 (0.8426, 0.9324)  0.0898 (0.8342, 0.9408) 0.1067 (0.8173, 0.9577) 0.1404 
25 (0.8564, 0.9244)  0.0680 (0.8500, 0.9308) 0.0808 (0.8373, 0.9436) 0.1063 
50 (0.8668, 0.9148)  0.0480 (0.8623, 0.9193) 0.0570 (0.8532, 0.9283) 0.0751 
75 (0.8732, 0.9118)  0.0386 (0.8695, 0.9154) 0.0459 (0.8623, 0.9227) 0.0604 
100 (0.8762, 0.9096)  0.0333 (0.8731, 0.9127) 0.0396 (0.8669, 0.9190) 0.0521 
250 (0.8832, 0.9042)  0.0210 (0.8812, 0.9061) 0.0249 (0.8773, 0.9101) 0.0328 

 
Table 6.  Exact C.I. for �1,2 in case Random –Fixed Strength 

1- � 0.90 0.95 0.99 
n C. I.  D C. I. D C. I. D 
5 (0.8066, 0.9354)  0.1288 (0.7826, 0.9472) 0.1646 (0.7348, 0.9653) 0.2305 
15 (0.8523, 0.9212)  0.0689 (0.8405, 0.9289) 0.0884 (0.8173, 0.9421) 0.1248 
25 (0.8637, 0.9162)  0.0525 (0.8551, 0.9224) 0.0673 (0.8382, 0.9333) 0.0951 
50 (0.8720, 0.9091)  0.0371 (0.8661, 0.9138) 0.0477 (0.8547, 0.9221) 0.0674 
75 (0.8774, 0.9073)  0.0299 (0.8727, 0.9111) 0.0384 (0.8638, 0.9181) 0.0543 
100 (0.8799, 0.9058)  0.0259 (0.8759, 0.9091) 0.0332 (0.8683, 0.9152) 0.0469 
250 (0.8855, 0.9018)  0.0163 (0.8831, 0.9040) 0.0209 (0.8785, 0.9080) 0.0295 

 
Table 7.  Identical  Random  Independent Strength, �1,2 � 0.800737 and O1 � O2 � 9000. 

n  Oc  �c),*  y�* 
5 9170 0.77027 0.00419 
15 8917 0.78827 0.00120 
25 9095 0.79528 0.00067 
50 9008 0.79764 0.00033 
75 9021 0.79896 0.00022 
100 8991 0.79906 0.00016 
250 9016 0.80040 0.00006 

 

Table 8. Approximate C.I. for �1,2 in case Identical Random  Independent Strength  
1- � 0.90 0.95 0.99 
n C. I.  D C. I. D C. I. D 
5 (0.6687, 0.8719)  0.2032 (0.6496, 0.8909) 0.2413 (0.6114, 0.9291) 0.3177 
15 (0.7323, 0.8443)  0.1120 (0.7217, 0.8548) 0.1331 (0.7007, 0.8758) 0.1751 
25 (0.7530, 0.8375)  0.0845 (0.7451, 0.8455) 0.1004 (0.7292, 0.8614) 0.1322 
50 (0.7679, 0.8273)  0.0594 (0.7624, 0.8329) 0.0705 (0.7512, 0.8441) 0.0929 
75 (0.7748, 0.8231)  0.0483 (0.7703, 0.8276) 0.0573 (0.7612, 0.8366) 0.0754 
100 (0.7782, 0.8199)  0.0417 (0.7742, 0.8238) 0.0496 (0.7664, 0.8317) 0.0653 
250 (0.7873, 0.8136)  0.0263 (0.8812, 0.9061) 0.0249 (0.7799, 0.8210) 0.0411 

 
Table 9. Exact C.I. for �1,2 in case Identical Random  Independent Strength  

1- � 0.90 0.95 0.99 
n C. I.  D C. I. D C. I. D 
5 (0.6639, 0.8789)  0.2150 (0.6275, 0.9004) 0.2729 (0.5585, 0.9339) 0.3754 
15 (0.7274, 0.8489)  0.1215 (0.7077, 0.8632) 0.1555 (0.6695, 0.8877) 0.2182 
25 (0.7491, 0.8412)  0.0921 (0.7344, 0.8525) 0.1181 (0.7062, 0.8725) 0.1663 
50 (0.7651, 0.8300)  0.0649 (0.7551, 0.8384) 0.0833 (0.7358, 0.8534) 0.1176 
75 (0.7724, 0.8253)  0.0529 (0.7644, 0.8322) 0.0678 (0.7490, 0.8448) 0.0958 
100 (0.7761, 0.8219)  0.0458 (0.7692, 0.8280) 0.0588 (0.7560, 0.8390) 0.0830 
250 (0.7859, 0.8148)  0.0289 (0.7817, 0.8187) 0.0370 (0.7736, 0.8259) 0.0523 

 
Example 2. Real Data. 
        As an another example we choose the real data set proposed by Lawless [14] (1982, p. 185) and Nelson [15], 
referring to which the time breakdown of an insulating fluid between electrodes at a voltage of 36 kV (minutes), 32 
kV (minutes) and 30 kV (minutes). The data shown below are breakdown times for 3 groups of specimens, each 
group involving a different voltage level. 
     Voltage Level (kV)     n                    Breakdown Times 
               36                    15         {1.97, 0.59, 2.58, 1.69, 2.71, 25.50, 0.35, 0.99, 3.99,  
                                                      3.67,  2.07,0.96, 5.35, 2.90, 13.77} 
               32                     15        {0.40, 82.85, 9.88, 89.29, 215.10, 2.75, 0.79, 15.93,  
                                                      3.91, 0.27, 0.69,100.58, 27.80,13.95, 53.24}; 
               30                     11        {17.05, 22.66, 21.02, 175.88,139.07,144.12, 20.46,  
                                                      43.40, 194.90, 47.30, 7.74} 
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A models suggested by engineering 
consideration are that, for a fixed voltage level, time 
to breakdown have a Weibull distributions. 
Furthermore, distributions corresponding to different 
voltage levels are thought to differ only with respect 
to their scale parameters, the shape parameter being 
the same for different levels.  

The computations in this example are done with k=1, 
m=2, a= 0.01, 6� � 6. 	, p=3, �� � 10,  O)= 10000,O* � 8000 and O� � 9000, ') � '* �15, '� � 11, �),* � 0.798516 for Model I and �),* � 0.894242  for Model II. 
 The results are presented in Tables 10-12.  

Table 10.  Oc), Oc*, Oc�, �c�,� and , y�zc{,`*  in case Non-Identical Random  Independent Strength Oc)  Oc* Oc� 
�c),* yd*

 
Model I Model II Model I Model II 

1303 828701 170452 0.46360 0.99941 0.00844 0.0000003 

 
Table 11. Approximate C.I. for �1,2 in case Non-Identical Random  Independent Strength  

1- � 0.90 0.95 0.99 
Model C. I.  D C. I. D C. I. D 
I (0.3120, 0.6152)  0.3032   (0.2835, 0.6437) 0.3601 (0.2266, 0.7006) 0.4740 
II ((0.9991, 0.9997)  0.0006    (0.9991, 0.9998) 0.0007 (0.9990, 0.9999) 0.0009 

 
Table 12. Exact C.I. for �1,2 in case Non-Identical Random  Independent Strength  

1- � 0.90 0.95 0.99 
Model C. I.  D C. I. D C. I. D 

I (0.3565, 0.5899)  0.2334 (0.3257, 0.6226) 0.2969 (0.2714, 0.6817) 0.4103 
II (0.9992, 0.9996)  0.0004 (0.9991, 0.9997) 0.0006 (0.9990, 0.9997) 0.0007 

 
7. Conclusions 
          In this paper we presented the problem of 
determining the reliability of a series chain consisting 
of k identical likes. Our computational results were 
computed by using Mathematica 8.0. Our observation 
concerning the results are stated in the following 
points:  
1- From Tables (1), (4) , (7) and (10), we see that  y�zc{,`*  decreases as the sample size n  increases, i.e. �c�,� is consistent estimator  of  ��,�. 
2- From another Tables, we see that the    length of the 

C.I.s  decreases by  increasing  the sample size. 
3- We find that �c),*  under Model II is greater than that 

under Model I. This means that the value of 
reliability change by varying the type of strength. 
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