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Abstract: One of the most challenging issues in circuit design is power consumption. Designing circuit using 
reversible logic is one of the solutions to decrease power loss. Theoretically, a reversible circuit has zero internal 
power dissipation because it does not lose information. Thus reversibility will be necessary for future circuit 
designs. Multiple-valued reversible logic which decreases the width of quantum circuits is an emerging area of 
reversible/quantum logic. The simplest type of multiple-valued logic is ternary quantum logic. On the other hand, 
Data shifting has been widely used in many key computer processes such as high-speed/low-power error-control 
application, address decoding, bit indexing and many arithmetic operations specially floating point arithmetic units. 
Barrel shifters are combinatorial shifters which are used in high speed and high performance applications. 
Reversible binary and ternary bidirectional barrel shifter and binary normalization barrel shifters for floating point 
arithmetic are presented in this paper for the first time. Proposed barrel shifters are evaluated and formulated in 
terms of number of reversible gates, number of garbage outputs, number of constant inputs, quantum cost and 
hardware complexity. All the scales are in nanometric area. 
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1. Introduction 

Although traditional computers with the 
advent of VLSI and ULSI technologies are 
constructed in smaller dimensions and high 
processing speed, but always there is a question that 
up to where they can continue in such a direction. 
Due to the fact that there is a constraint for traditional 
computers’ dimensions and processing speed, it 
cannot be continued any more. Thus in such a case 
novel technologies based on nanotechnology such as 
Quantum Computing will be replaced with the 
traditional ones. Quantum computers are based on 
Quantum physics’ laws and have been constructed on 
reversible gates design and using hardware concludes 
Quantum tools, are suitable substitute for classic 
computers in the near future. In other words, 
nowadays, quantum computing and reversible 
circuits, in order to power minimization designs, have 
received significant attention. Bit loss from 
information relates to heat generation whereas in 
reversible circuits due to this fact that there is no any 
information loss, no heat will be generated. From one 
point of view Circuit design using reversible gates 
relates to no energy consumption in circuits. 
Landaulet[1] proved that generated heat for erasure of 
a single bit is KTln2 joules of energy Where K= 
1.3806505*10-23m2 kg-2 K-1 (joule/Kelvin) is 
Boltzmann constant and T is the absolute temperature 
of the environment. In 1973 Bennett [2] pointed out 

that reversible computing is computing without any 
information loss. Reversible logic is one of the 
interested subjects in systems based on 
nanotechnology, Quantum computing, low power 
CMOS design, DNA computing, bioinformatics and 
optical information processing. Multiple-valued 
quantum circuits are important options for future 
quantum computing and they have several advantages 
more than the corresponding binary quantum system. 
Muthukrishnan and Stroud showed realization of 
multiple-valued quantum gates using liquid ion-traps 
and proposed a family of 2-qudit multiple-valued 
gates called M-S gate[3]. The implementation of 
Ternary logic gate is realized by M-S gate. Moreover, 
ternary quantum gates have been realized using traps 
ions by Klimov et al [4], Hugh and Twamley [5]. 
Ternary reversible/quantum logic synthesis is a 
neoteric and growing area. There is a good number of 
works that have been presented on ternary quantum 
logic synthesis [6-18]. The quantum gates act on 
quantum bits (qubit). A qubit is a unit of quantum 
information. In ternary logic the possible states for a 

qubit are 2&1,0 . On the other hand, circuit 

design for shifting data is possible as combinatorial 
and sequential circuits. Shift registers are sequential 
circuits which require clock pulse for shifting data 
while barrel shifters are combinatorial circuits 
without any requirement clock pulse. 
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As we know, the most popular numerical system that 
is commonly used in computer systems and has 
peculiar importance in its widespread use in various 
areas is “floating point” numbers. In floating point 
operations such as addition/subtraction, 
multiplication and division, shifters are key 
components and crucial in computing speed. The 
speed of shifters has an extreme impact on overall 
performance of the floating-point addition/subtraction 
unit. Consequently, shifters are usually implemented 
as combinatorial shifters rather than shift registers, 
which would require a large and variable number of 
clock cycles to complete the shift. Barrel shifters are 
a common design choice due to fulfilling multi-bit 
shifts in a single cycle. Barrel shifters are normally 
utilized in many applications as: word pack/unpack, 
encryption and decryption Algorithms, test 
generation for DSP [19], variable length encoding, 
floating-point normalization, quantum-dot cellular 
automata [20], high-speed/low-power error-control 
application [21] and many other applications. To 
design a reversible ternary and binary floating point 
adder/subtractor is required to have crucial 
ternary/binary barrel shifters, so in this paper, 
optimized reversible binary and ternary bidirectional 
barrel shifters and also normalization barrel shifters 
for floating point arithmetic are presented for the first 
time. The proposed work is the first endeavor for 
designing reversible binary and ternary non-rotating 
barrel shifters.  

The structure of the paper is organized as 
follows: section 2 discusses the common definitions 
of reversible and ternary logic and some utilized 
ternary gates. Section 3 presents a summary of the 
works that have been performed on reversible binary 
and ternary barrel shifters. Introductory structure on 
barrel shifters as well as Reversible binary and 
ternary bidirectional logarithmic logical shifter is 
described in section 4. Required reversible barrel 

shifters for floating point arithmetic are proposed in 
section 4 too. The simulation results with VHDL 
language and Quartus simulator are shown in section 
5 and section 6 draws conclusions. 
2. Reversible Binary and Ternary Gates 

A reversible circuit is composed of 
reversible gates in which there is a one-to-one 
relationship between its inputs and outputs [22]. 
Designing reversible circuits using reversible gates 
have two limitations: one of the constraints is that the 
fan-out is not allowed; therefore FG is often used as a 
copying gate. The other limitation is that the feed-
back is forbidden. In this section the definitions of 
garbage outputs, constant inputs/ancilla bits, quantum 
cost and necessary ternary gates are described. For 
information on other utilized reversible gates such as 
NOT, FG, FRG, PG you can refer to [23, 24] 
references. 
Garbage outputs: Garbage outputs are used to 
preserve reversibility and they are defined as some 
outputs that are not used for further computations in 
the circuit [25, 26]. 
Constant inputs/Ancilla bits: The inputs that are 
added to an n×k function to make it reversible, are 
called constant inputs [25, 26], in other words an 
auxiliary input that has a constant value is called an 
ancilla bit.  
Quantum cost: The quantum cost of a reversible 
gate is realized by using 1×1 and 2×2 reversible 
gates. The quantum cost of 1×1 and  2×2 reversible 
gates are zero and one respectively[25, 26]. The 
quantum cost of a ternary gate is the number of 1-
qudit gates (shift gates) and 2-qudit gates (M-S gates) 
that are used in its implementation.  
Ternary Modified Fredkin Gate 
Modified Fredkin gate is a reversible ternary 4*4 
gate. It has been proposed in [27] by A. I. Khan et al. 
MFG can be represented as:  
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Where VI  and VO  are the input and output 

vectors. The symbolic representation of a 4-qutrit 
MFG is depicted in figure 1. If A was larger than or 
equal to B (A≥B) then input lines(C, D) are displaced 
otherwise outputs(R, S) are the same repetitive 
inputs. According to MFG realization by M-S gates 
in figure 2, the QC of MFG is 41. It consists of 21 
shift gates and 20 M-S gates. The proposed circuits 
exert this gate as a 2*1 multiplexer. 
 
Ternary Feynman Gate  

A ternary Feynman gate can be described by 
the equations: P=A, Q=A+B where P is the pass 
through output and Q is the controlled output. A “+” 
sign is used to indicate GF (3) addition. This gate is 
used by designer for fan-out purpose. If the 
controlled input (B) is set to zero the Q and P output 
are A. The logic diagram of ternary Feynman gate is 
demonstrated in figure 3. Ternary Feynman gate can 
be realized using two M–S gates and two shift gates 
with QC=4.  In Figure 3, P = (A + 1) + 2= A. If A = 
0, then a1 = 0 and a2 = 1 none of the transformations 
will be applied on B and the output will be Q = B = B 
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+ 0 = A + B. If A = 1, then a1 = 1 and a2 = 2 only the 
right transformation (+1) will be applied on B and the 
output will be Q = B + 1 = A + B. If A = 2, then a1 = 
2 and a2 =0 the left transformation (+2) will be 
applied on B and the output will be Q = B + 2 = A + 
B [27]. 
 



 
Figure 1. Symbol of Ternary MFG 
 

 

 
Figure 2. Modified Fredkin Gate Realization Using M-S gate 

BAQ 
                       

(a)                                                    (b) 
Figure 3. Ternary Feynman gate, (a): Symbol of Ternary FG, (b): Realization of ternary FG using M-S gate 

 
Ternary Toffoli Gate 

Three-qutrit Ternary Toffoli gate has three 
inputs.  A and B are the controlling input and C is the 
controlled one. TTG can be represented as: 
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Where VI  and VO  are the input and output 

vectors. The symbolic representation of a 3-qutrit 
TTG and quantum realization of this gate by M-S 

gates are depicted in figure 4. As can be observed the 
realization of TTG required two ternary Feynman 
gates and four 1*1 shift gates and four 2*2 M-S 
gates. So it will have a total of eight 1*1 shift gates 
and eight 2*2 M-S gates, thus the quantum cost of 
TTG equals 16 with no ancillary bit [27]. 

 

                   
                              (a)                                                                                                (b)                   

Figure 4: Ternary Toffoli gate, (a): Symbol of Ternary TG, (b): Realization of ternary TG using M-S gate 
 
3. Literature Survey 

Barrel shifters are useful in embedded 
processors. Multiple shifts are needed to do 
computations in digital signal processors. Paul 
Gigliotti [28] proposed the design of irreversible 
barrel shifters using multipliers. Several other 
complex irreversible barrel shifters such as Mask-
based data-reversal barrel shifter, Mask-based two’s 
complement barrel shifter and Mask-based one’s 
complement barrel shifter with overflow and zero 

flag have also been presented by Pillmeier and et al. 
[29]. Saeid Gorgin and Amir Kaivani[30] published 
the first paper on reversible barrel shifters. They 
proposed a unidirectional logarithmic shifter with 
large namber of gates. Irina Hashmi and Hafiz Hasan 
Babu [31] showed the optimization of the Gorgin’s 
paper. They proposed an efficient unidirectional 
barrel shifter with less QC, garbage outputs and 
number of gates. Saurabh Kotiyal and et al. [32] 
described design of a ternary unidirectional barrel 
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shifter using multiple-valued reversible logic. There 
are several types of shift operations depending on 
their applications including logic shift, arithmetic 
shift and rotate. The proposed barrel shifters in [30-
32] are capable of only rotating to the left. Thus, 
Ravish Aradhya H.V and et al [33] proposed 
bidirectional logarithmic shifter using RLM gate. The 
proposed barrel shifter in [33] can be rotate input data 
in both directions (left and right). Design of a 
reversible bidirectional barrel shifter is explained by 
Saurbh Kotiya, Himanshu Thapliyal and Nagarajan 
Ranganathan[34]. This barrel shifter is a non-rotating 
barrel shifter that is capable of bidirectional logic and 
arithmetic shift. 

 
4. Barrel Shifter 

Intel was the first company that utilized 
barrel shifters in its numerical data processors. A 

combinatorial shifter generates all possible shifted 
patterns but only one is provided at the output 
according to some control bits. Since, in general, 
such combinatorial shifters are capable of performing 
circular shifts (rotates) as well, they are commonly 
known as barrel shifters [35]. In [30-33] left rotating 
and bidirectional rotating barrel shifters has been 
proposed, but non-rotating barrel shifters are required 
for floating point operations and many other 
applications. On the other hand, A barrel shifter can 
be implemented as a single level array where each 
input bit is directly connected to m (and even more) 
output lines. For example a single level array right 
shift barrel shifter with four bits input data and two 
select lines for controlling bit shift operation is 
depicted in figure 5. 
 

 
Figure 5. Irreversible single level array four bit right barrel shifter 

 
For floating point calculation, which deals 

with large numbers, single level array barrel shifter 
design is not appropriate, because the large number 
of connections and resulting large electrical load 
make an undesirable solution [36]. One alternative is 
a logarithmic barrel shifter as demonstrated in figure 
6. A logarithmic (m, K) barrel shifter is composed of 
m-bit input data and K select lines that control bit 
shift operations. The logarithmic barrel shifter has 

nK 2log  stages so that i=0, 1, …, (K‒1). In every 

stage if di control signal equals one then 2i times shift 
will occur in input data, otherwise the input data will 
not change. The irreversible logarithmic shifter 
implemented with 2×1 multiplexers. The proposed 
reversible barrel shifters will be explained and 
evaluated in the next section. 

 
 

 
Figure 6. (m, k) logarithmic barrel shifter 
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4.1 Proposed optimized Reversible bidirectional 
logarithmic logical shifter 

A bidirectional logarithmic logical shifter is 
a non-rotating barrel shifter which can shift input data 
to left or right. It has a control signal (D) for 
determining the direction of the shift. If D signal is 
set to zero then the logical shifter will work as a 
logical right shifter otherwise it will work as a logical 
left shifter. For instance a 4-bit bidirectional 
logarithmic logical shifter which is shown in figure 
7a  has two stages(di, i=0,1) and it is constructed by 
12 Fredkin gates, and every one of them is as a 2×1 
multiplexer and 5 Feynman gates as a copying gate. 
The 2 Fredkin gates before and after the logical right 
shifter is required to reverse input data and logical 
right shifter’s output data respectively. The (4, 2) 
bidirectional logical barrel shifter which is depicted 
in figure 7 takes m3,m2,m1,m0 as data inputs and d1,d0 
as select inputs. The circuit function is according to 
table 1. In D,d1,d0=000 & D,d1,d0=100 states the 
input data does not change, in other states the value 
in d1,d0 determines shift amount and depend on D the 
input data is shifted to the right or left. 
 

Table 1. Function table of the (4, 2) bidirectional 
logical barrel shifter 

D d1 d0 output 

0 0 0 m3m2m1m0 

0 0 1 0m3m2m1 

0 1 0 00m3m2 

0 1 1 000m3 

1 0 0 m3m2m1m0 

1 0 1 m2m1m00 

1 1 0 m1m000 

1 1 1 m0000 

 
This article proposes an optimized 

bidirectional logarithmic logical shifter. We can 
replace the FRG gates which have a zero input 
(figure 7a) with PG gates that are put as AND gates 
with two inputs consisting of data bit and 

id . So the 

proposed circuit has a less QC and hardware 
complexity than common bidirectional logical barrel 
shifter. Table 2 shows the compressive between the 
proposed design and common design.   

 
Table 2. Comparison between common and optimized barrel shifter 

Total Logical 
Calculation 

Quantum 
Cost 

NO. of Garbage 
outputs 

NO. of Constant 
inputs 

NO. of 
gates 

 

 183929   62 11 8 17 
Optimized Design 

Figure 7b 

 244829   65 11 8 17 
Common Design 

Figure 7a 
 
 

                       
(a)                                                                                        (b) 

Figure 7. Bidirectional logarithmic logical shifter (a): Common design, (b): proposed optimized design 
 

Optimized (4, 2) bidirectional logarithmic 
logical shifter has four main outputs and 11 garbage 
outputs with QC=62. Optimized (4, 2) bidirectional 

logical barrel shifter can be generalized for (m, k) 
reversible barrel shifter.  
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Theorem 1: The proposed optimized (m, k) 
reversible bidirectional logical shifter has an m-bit 
input and output data and K stages for logical right 
shifter. Let NPG, NFRG and NFG be the total number of 
Peres, Fredkin and Feynman gates respectively then 

12  K
PGN  

)12()1(  K
FRG mKN  







1

0

)2(
K

i

i
FG mN  

 
Proof: PG is utilized as a AND gate in proposed 
circuit. Every stage in logical right shifter is denoted 
by i, so the number required PG gates in each stage 

equals 1,...,1,0,2  kii  thus K stages will have a 

total of 




1

0
2

k

i

i  Peres gates. Every reversal data unit 

needs 
2

n
 Fredkin gates and the logical right shifter 

requires (m‒2i) Fredkin gates for each stage. Thus an 
m-bit bidirectional barrel shifter with K stages will 

have a total of 





1

0
2)1(

k

i

imK  Fredkin gates. 

Fan-out gates must be used for copying signal in 
reversible circuit. One of the fan-out gates is FG. The 
number of FG gates in each stage is m‒2i hence the 

circuit can be realized with 





1

0
)2(

k

i

im  Feynman 

gates. 
 
Theorem 2: Let GO, CON be the total number of DC 
outputs and inputs respectively, then 

1)1(  mKGO  

KmmCON
k

i

iK  




1

0
)2(12  

 
Proof: Every PG and Fredkin gate produces one 
garbage output except the last Fredkin gate that 
generates two DC outputs. In other words in each row 
the logical right shifter produces m+1 DC outputs so 
K stages will have a total of K(m+1) garbage outputs. 
Further, the last data reversal unit consists of the 

chain of 
2

n
 Fredkin gates with only one garbage 

output. Thus, the proposed shifter produces K (m+1) 
+1 number of garbage outputs. The number of 
constant input is commensurate to the number of 
Peres gates and Feynman gates so it equals 

Kmm
K

i

iK  




1

0
)2(12 .  

Theorem 3: Let QC and T be the total number of 
quantum cost and hardware complexity of proposed 
design respectively, then 

PGFRGFG NNNQC 45   

)2()242()(   PGFRGFG NNNT  

 
Proof: The quantum cost is the most common 
comparison criterion of quantum circuits. This 
yardstick is also used in reversible circuits. The 
quantum cost (QC) of a reversible or quantum circuit 
is calculated by required number of primitive 
reversible logic gates (1*1 or 2*2) which is used in 
the circuit design. So each Reversible gate has a 
certain cost. The proposed circuit is realized by PG, 
FG and FRG gates with quantum costs 4, 1 and 5 
respectively. Thus the total cost of proposed design is 
QC=NFG+5NFRG+4NPG. Another significant factor for 
evaluation of reversible circuits is hardware 
complexity. It refers to the number of NOT, AND 
and EXOR gates required to realize the output phrase 
of desired gate. Hardware complexity has four main 
factors consisting α, β, γ and T which are defined as: 
α is the number of two-input EX-OR gate,  β is the 
number of two-input AND gate, γ is the number of 
NOT gate, and T is Total logical calculation. So the 
total logical calculation of this circuit is  

)2()242(   PGFRGFG NNNT . 

 
4.2 Proposed optimized ternary bidirectional 
logarithmic logical shifter 

Ternary Feynman gates, ternary Modified 
Fredkin gates (MFG) and ternary Toffoli gates are 
used for implementation of ternary bidirectional 
logarithmic logical shifter. The ternary Feynman gate 
is utilized to avoid the fan-out. The ternary MFG and 
TFG are applied as mux 2*1 and AND gates 
respectively. The design of optimized (4, 2) ternary 
bidirectional logical shifter has been demonstrated in 
figure 8 and the symbol «o» is used to indicate 
ternary Feynman gate for better diagnosis. The circuit 
function is like the optimized binary barrel shifter 
function in the previous section, therefore avoided 
repetitive explanations. The (4, 2) ternary 
bidirectional logical shifter is constructed by five 
ternary FG, nine MFG and three TTG and it produces 
four main outputs and twelve garbage outputs with 
QC=437. The (4, 2) ternary bidirectional logical 
barrel shifter can be generalized for reversible (m, k) 
ternary bidirectional logical barrel shifter. The 
number of ternary gates required to produce the 
ternary logical barrel shifter equals the number of 
gates in binary logical shifter, while the number of 
ancilla bits and garbage outputs are different. The 
proposed ternary right barrel shifter requires m+1 
garbage outputs for each stage. Furthermore the last 
reversal data unit needs two garbage outputs. Thus if 
the total number of stages is K, then the circuit can be 
realized with at least K (m+1) +2 number of DC 
outputs. The number of ancilla inputs is proportional 
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to the number of TTG and TFG in addition, the first 
reversal unit needs one ancilla bit so it equals Km+1. 
Hence the ternary bidirectional logarithmic logical 
shifter for transferring m-bit data will require the 
following parameters: 
 Number of ternary Feynman 

gates: 





1

0
)2(

k

i

i
TFG mN  

 Number of  ternary modified Fredkin 

gates: )12()1(  k
TMFG mKN  

 Number of ternary Toffoli 

gates: )12()2(
1

0






kk

i

i
TTGN  

 Number of ancilla inputs:  

1)2(2
1

0
 




KmmCON

k

i

ik  

 Number of garbage outputs: 2)1(  mKGO  

 Quantum cost: 

TTGTMFGTFG NNNQC 16414   

With these formulas, it is needless to draw 
complicated and time-consuming figures for ternary 
(m, K) bidirectional logical shifter.  

 
Figure 8. Optimized (4, 2) ternary bidirectional 
logical shifter 
 
4.3 The proposed optimized reversible binary 
logarithmic right shift barrel shifter & GRS-bit 
Generation Component for floating point 
operation 

The method of floating-point operations’ 
execution depends on the particular format applied to 
display the operands. In the standard form it is 
assumed that the significants are normalized fractions 
in signed-magnitude display and the exponents are 
biased. For example in addition/subtraction 
operations the exponents of both operands must be 

equal before adding or subtracting the significant. To 
achieve this, the significant are aligned by shifting 
the significant of the smaller operand to the right, 
incrementing its exponent at the same time, until it 
equals the other exponent. So If an alignment preshift 
is fulfilled, the bits that are shifted out should not all 
be thrown away, since they can possibly affect the 
rounding of the result. Keeping all the bits that are 
shifted out doubles the width of the significant 
adder/subtractor. A general solution is to use three 
bits, namely, G (guard), R (round) and S(sticky). 
When the significant of the number with the smaller 
exponent is shifted to the right through a number of 
bit positions that equals the exponent difference, two 
of the shifted out bits of the aligned significant will 
be retained as guard (G) and Round (R) bits. So for 
m-bit significant, the effective width of aligned 
significant must be m + 2 bits. A third bit, namely the 
sticky bit (S), is appended at the right end of the 
aligned significant. The sticky bit is the logical OR of 
all shifted out bits. Therefore in this section a 
reversible logarithmic right barrel shifter & GRS-bit 
Generation Component is proposed for the first time. 
The display of floating-point numbers comprises two 
parts the significant (or mantissa) M and the exponent 
E. In order to illustrate the modeling strategy, the 
design of reversible (8, 3) right barrel shifter & GRS-
bit Generation is explained, so if M=8 and E=5 then 
d4, d3,d2,d1,d0 lines will equal to exponent difference 
of the two mantissa which d2,d1,d0 determine the shift 
amount and d4,d3 lines are utilized as two inputs of 
PG(as a NOR gate) to create final result and required 
GRS-bits. As can be observed in figure 9, the 
proposed shifter is composed of FRG (as a 
multiplexer), FG(as fan-out gates) and PG(as 
AND/OR/NOR gates). For most readability, the 
Feynman gates are shown with symbol of «●». The 
proposed design consists of 21 Fredkin gates, 28 
Feynman gates for producing the fan-out and 29 PG 
as a AND gate as well as 4 PG as an OR gate and 1 
PG as a NOR gate so the total number of PG equals 
34 gates. This circuit produces 64 garbage outputs 
with 62 constant inputs. The quantum cost of the (8, 
3) reversible right barrel shifter & GRS-bit 
Generation equals 269. Next section summarizes the 
important characteristics of the proposed optimized 
(m, k) reversible right barrel shifter & GRS-bit 
Generation in terms of number of gates, garbage 
outputs, ancilla bits, quantum cost and hardware 
complexity. 
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Figure 9. The proposed optimized (8, 3) reversible right barrel shifter & GRS-bit Generation component 

 
4.3.1 The Performance Evaluation 

In the (m, k) reversible optimized right barrel 
shifter & GRS-bit Generation, if m is total number of 
mantissa bits, k is the shift value and E is the number 
of exponent bits then this circuit will have K+1 rows 
which the number of required PG gates in each stage 
equals i22 , 1,...,1,0  ki  thus K stages will have 

a total of 





1

0
22

k

i

i  Peres gates. As well as the last 

row((K+1)th row) is constructed by 

k

i

i

0
2  number 

of Peres gates as AND gates, m‒4 PGs is required to 
make OR gate for producing sticky bit and E‒K‒1 
PGs is also needed to implement NOR gate. Thus 
K+1 stages will have 

)1()4(222
0

1

0
  




KEm

k

i

ik

i

i  which is 

82 2   KEmN k
PG

 number of Peres gates. 

The proposed barrel shifter requires m‒1 Fredkin 
gates for each stage. So the circuit can be realized 
with at least )1(  mKNFRG

 number of Fredkin 

gates. Every stage in proposed shifter is denoted by i, 
so the number required FG gates in 

1,...,1,0  ki equals 
immmm 21,...,21,21,21 210   

respectively. It means that the total number of 

Feynman gates equals 





1

0
2)1(

k

i

imK   which is 

12)1(  k
FG mKN .  

 DC inputs and outputs 
DC inputs and outputs are an important figure of 
merit to evaluate a design. In this section, the 
required formula for calculation of constant inputs 
and garbage outputs is presented. The number of 
constant inputs is commensurate to the number of 
Peres gates and Feynman gates so it 
equals

9225)1(  kEkmNN k
PGFG . In 

each row, every PG as an AND gate and Fredkin gate 
produce one garbage output except the last Peres gate 
that generates two DC outputs which is 

1)32( 2  KNFRG
k . As well as every PG 

produces two garbage outputs for implementing NOR 
and OR gates which are )1(2  KE  and 

)4(2 m . Thus, the (m, k) reversible optimized right 

barrel shifter & GRS-bit Generation produces 

12222)2( 2  KEKKm  garbage outputs. 

 Quantum cost and hardware complexity 
Two most significant criterions for evaluation of 
reversible circuits are QC and Total logical 
calculation. So these factors can be calculated by the 
functions bellow: 

PGFRGFG NNNQC 45      (1) 

)2()242()(   PGFRGFG NNNT

    (2) 
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4.4 The Proposed optimized reversible binary 
normalization barrel shifter for floating point 
arithmetic 

A floating-point number is normalized if the 
most significant digit of the mantissa is nonzero. In 
this way the mantissa contains the maximum possible 
number of significant digits. When two numbers are 
subtracted, the result may contain most significant 
zeros as shown in the following example: 
0.11100101 ×25 
    0.11011110 ×25 

 
0.00000111 ×25 

In the above example, the result number is 
necessary to shift left five times to obtain 0.11100000 
×20. In other words, the mantissa has an underflow if 
the most significant bit in position m7 is zero. In this 
case, the mantissa is shifted left and the exponent 
decremented. The bit in m7 is checked again and the 
process is repeated until it equals 1. When m7 = 1, the 
mantissa is normalized and the operation is 
completed, but loop is not possible in reversible 
logic. In this reason, the proposed normalization 
shifter must be able to shift mantissa necessary 
number with receiving the position of the first bit one 
from left. In order to illustrate the modeling strategy, 
we follow an example. If Proposed (8, 3) reversible 
normalization barrel shifter which is depicted in 
figure 10 takes 

0000010101234567 mmmmmmmm  as data 

inputs then data will be shifted to the left through 5-
bits for normalization. M2 is the position of the first 
bit one from left. It means that the position of first 

one bit is “010” thus the select lines of barrel shifter 

must be one’s complement of 101010 012  ddd . 

In other words the selecting lines in normalization 
left barrel shifter equal one’s complement of position 
of the first one bit in result mantissa. The proposed 
normalization barrel shifter for floating point 
arithmetic has been implemented using NOT, FRG 
and FG. This circuit is optimized due to the standing 
Peres gates instead of FRG gates which have zero 
inputs in common left barrel shifter. The Proposed 
optimized (m, K) reversible binary normalization left 

barrel shifter requires 1,...,1,0,2  kii  Peres gates 

for each stage so it will have a total 




1

0
2

k

i

i  PGs. 

The number requirement Fredkin gates in each stage 

equals )2( im   thus K stages will have a total of 







1

0
2

k

i

ikm  FRGs. The number of FG gates in each 

stage is )2( im   hence the circuit can be realized 

with )12()2(
1

0






kk

i

i Kmm  Feynman gates. 

The required parameters for evaluation of this circuit 
are calculated as bellow: 
 Number of ancilla inputs:  

KmmNNCON
k

i

ik

i

i
FGPG  









1

0

1

0
)2(2 

 Number of garbage outputs: )1(  mKGO  

 Quantum cost: 
PGFRGFG NNNQC 45   

 Hardware complexity:  

)2()242()(   PGFRGFG NNNT  

 

 
Figure 10. The proposed optimized (8, 3) reversible Normalization left barrel shifter  
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Figure 11. Simulation result of the proposed optimized (4, 2) Reversible bidirectional logical barrel shifter 

 

 
Figure 12. Simulation result of the optimized (8, 3) reversible right barrel shifter & GRS-bit 

  

 
Figure 13. Simulation result of the proposed optimized (8, 3) reversible Normalization left barrel shifter 
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5. Simulation Results 

VHDL stands for VHSIC (Very High Speed 
Integrated Circuits) Hardware Description Language. 
VHDL is commonly used to write text models that 
describe a logic circuit. It is a powerful language that 
allows you to describe and simulate complex digital 
systems. VHDL simulation environments provide 
ways of applying test vectors to the inputs of the 
circuit. The Quartus software supports Verilog HDL 
and VHDL languages. The proposed optimized (4, 2) 
Reversible bidirectional logical barrel shifter, 
optimized (8, 3) Reversible right barrel shifter & 
GRS-bit generation and optimized (8, 3) Reversible 
normalization logical left barrel shifter are 
implemented using VHDL code and simulated using 
Quartus Simulator. The Figures 11, 12 and 13 show 
an output waveform of proposed designs for several 
data test sets. 

 
6. Conclusions and Future Work 

Many of papers have worked on reversible 
binary/ternary rotating barrel shifters, but very little 
has been focused on non-rotating barrel shifter. So 
this article proposed an optimized reversible 
binary/ternary non-rotating barrel shifter. On the 
other hand, a few of researchers have concentrated on 
designing the required circuits for reversible floating-
point units, thus this research proposed optimized 
reversible binary logarithmic right shift barrel shifter 
& GRS-bit Generation Component and binary 
normalization barrel shifter for floating point 
arithmetic for the first time. The proposed optimized 
binary shifters are designed using Feynman gates, 
Fredkin gates and Peres Gates. Some parameters such 
as the amount of garbage outputs, the number of 
constant inputs, size of the circuit and quantum cost, 
are very important criteria in reversible logic design. 
So, all of the proposed designs have been evaluated 
in terms of aforementioned parameters. Two 
reversible four-bit bidirectional logical barrel shifters 
have been compared in terms of necessary factors and 
according to the obtained results from table 2, the 
proposed optimized barrel shifter is better than 
common barrel shifter in terms of QC and hardware 
complexity. In this research, the reversible optimized 
ternary bidirectional logical barrel shifter is also 
presented for the first time. The proposed optimized 
circuits are also generalized for m-bit operands and 
necessary formulas for computing the number of 
required gates, number of DC outputs/inputs, 
quantum cost and hardware complexity are 
suggested. With these formulas, it is needless to draw 
complicated and time-consuming figures for 
computing the parameters of the reversible binary 

and ternary proposed barrel shifters. Future related 
work could design the combinational of rotating and 
non-rotating barrel shifters as well as optimize one or 
more of evaluations metrics in proposed circuits. 
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