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Abstract: Adders are the most fundamental arithmetic circuits that are used in processors and play key role in VLSI 
circuits. Power consumption and speed of these circuits are important quality factors for high performance 
integrated processing circuits. Floating-point operators, integer multipliers, and modular adders need large adders. 
On the other hand, Field programmable gate arrays (FPGAs) due to the excellent features such as low power 
consumption, flexibility, reusability, reasonable cost, easy upgrading, have become a favored platform for VLSI 
design. At this article recent advances and state of the art techniques in FPGA-Based Adders are reviewed. 
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1. Introduction 

Adders are building block in digital 
processing systems. Design and implementation of 
these circuits have received much research attention 
from designers. A large spectrum of architecture is 
available for adders such as ripple-carry, carry-look-
ahead, carry-skip adders [1], [2]. Utilizing of each 
approach in design is depending on the application, 
throughput and latency. When base on the application 
the latency is not design major factor ripple-carry 
architecture can be used while the other two 
architectures are proper to perform high throughput 
with small latency. In some of systems assigned 
adders are expected to have high throughput while 
latency is not so limitation factor, at such systems it 
may be commodious to follow architectures that are 
less complicated than carry-skip or carry-look-ahead 
adders [1], [2]. 

In this paper, we discuss the various designs 
of FPGA-based adders. 
 
2. FPGA technology 

Nowadays Field Programmable Gate Array 
(FPGA), have produced in varicose processing 
platforms, with high speed microprocessors, 
memories and data transfer links. FPGAs have an 
array of logic modules, programmable routing 
resources and input/output blocks. FPGAs in 
compare with CPU have low power dissipation. 
CPUs run applications as a flow of instructions but 
FPGA segments application into several optimized 
and independent logic blocks. A study about CPU 
and FPGA has been done in [4]. 

 
 

3. State of art FPGA-based adders 
One of the earliest structural algorithm and 

design procedure for a 32-bit FPGA-based adder was 
introduced by Hashemian (1995). This algorithm was 
based on the carry select technique and for fast 
response operands was divided into slices. The slice 
carries by a parallel processing technique were 
transferred into a multiplexer based structure. By this 
parallel processing, the final carry terms was 
produced logarithmically, rather than linearly. This 
logarithmic approach was for the carry propagation 
delays decreasing while the data size increase. Base 
on this algorithm one gate delay is added to the 
overall time for the addition with each doubling of 
the operand size [5]. 

A fault-tolerant adder was offered by 
Alderighi et al. (2001). On this design fault tolerance 
at lower design costs and by shifting and rotating the 
operands given in input to the replicated ALUs, and 
by adopting a scheme for the full-adder block was 
accomplishing [6]. 

Morris et al. (2005) reported two FPGA-
based reduction methods for reducing multiple sets of 
sequentially delivered, floating point values in 
optimal time without stalling the pipeline. The serial 
method was a time-division multiplexed 
implementation of a full binary reduction tree (figure 
1). In the parallel method two α-stage adders had 
used. One of the adders was for reducing all the 
values for a given set. After arriving the last value in 
a set, there were multiple partial reductions in the 
pipeline, if all adders were busy, new values were 
buffered until an adder became available [7]. 
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Figure 1: Serial Reduction Architecture 
 
A design methodology for floating-point 

adder with leading-one predictor (LOP) was 
presented by Malik & Ko (2005).Figure 2 shows an 
implementation of this algorithm.  LOP was for 
prediction of the shift amount for post normalization 
in parallel with the addition. Shifter was for pre-
normalization and post-normalization. The LOP was 
the critical path for the addition operation [8].   
 

 
 
Figure 2: implementation of floating point adder 
algorithm 
 

Figure 3 depict Maslennikowa et al. (2006) 
offered structure for the q-operands multi-operand 
modular adders. These adders were based on a carry-

propagate adder tree and had read-only memory 
(ROM) units for correction of partial results [9]. 

 

 
Figure 3: multi-operand modular adders’ structure 

 

For designing floating point components in 
FPGAs, Karlstrom et al. (2006) offered a method. 
This method was based on using parallel 
normalization approach to reduce the number of 
pipeline stages needed to perform the normalization 
operation. Figure 4 shows the adder architecture. In 
the first step, the operands are compared and 
swapped (if require) and the smallest number enters 
the path with the alignment shifter. Also the implicit 
one is added at this step, if the input operands are 
non-zero. In the second step, by the exponent 
difference, the smallest number is shifted down so 
that the exponents of both operands match. Add or 
sub operations are executed in the next step. The final 
step is the normalization. At this method, due to the 
earlier comparison and swap step, sub operation 
never causes a negative result [10]. 
 

 
 

Figure 4: Karlstrom’s adder architecture 
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Kikkeri & Seidel (2007) reported a double 
precision floating-point adder on the full gate-level 
verification and FPGA implementation without 
considering parameterized floating-point adder 
implementations. For optimization in the design 
several methods such as nonstandard separation into 
two paths, unification of rounding cases for addition 
and subtraction, sign magnitude computation of a 
difference based on one’s complement subtraction, 
and circuits for approximate counting of leading 
zeros from borrow-save representation had used [11]. 
Ng et al. (2008) described an adder for bit-stream 
signal processing. This circuit was customized for 
quad-level sigma-delta modulated signals (figure 5). 
This adder was based on ripple carry adder and one 
bit of output was fed back to the adder to suppress the 
truncation error [12]. 
 

 
Figure 5: Quad-level bit-stream adder 

 
A 3-input floating-point adder was reported 

by Guntoro & Glesner (2008). With the purpose of 
distributing the critical paths and improving the 
performance the design was based on a 5-level 
pipeline stage [13]. Malik et al. (2008) studies 
showed that the standard floating-point adder 
algorithm is area-efficient, but has more levels of 
logic and greater overall latency. Leading-one 
predictor algorithm adds parallelism to the design and 
thus reduces levels of logic significantly, but because 
of added hardware and significant routing delays it 
does not significantly improve overall latency in 
FPGAs [14].  

Yousuf & Najeeb-ud-din (2008) introduced 
a methodology for carry select adder. In this 
methodology, sum was calculated for carry-in of 
‘0’and other sum for carry-in of ‘1’. These sums were 
calculated by making use of one XOR gate and an 
inverter. Final sum-out was obtained by making use 
of multiplexer whose strobe signal was the carry of 
the previous stage (Cin). Likewise, Carry-out is 
generated by making use of a multiplexer whose 
strobe signal is Sum0. Further; optimization of the 
proposed logic was made by replacing each logic 

element of the proposed logic with NAND gates. 
Figure 6 illustrate a carry select adder [15].  
 

 
Figure 6: Basic Carry Select Adder Cell 

A study on the carry-chain type BCD adders 
was reported by Biou et al. (2009). Base on this study 
for big operands the decimal adder works faster than 
an equivalent binary implementation and furthermore 
the coding / decoding processes are no more needed. 
The time delays for BCD adders are slightly better 
while the hardware requirements, depending on 
algorithm selection, range from three to four times 
that of a binary ripple-carry adder. For very great 
numbers the time saving is more significant [16]. 

Ortiz et al. (2009) by taking advantage of 
the specialized carry-logic studied implementations 
of carry-save adders on FPGA devices. They showed 
that it is possible to implement redundant adders with 
a hardware cost close to that of a carry propagate 
adder. Specifically, for 16 bits and bigger word 
lengths, redundant adders are clearly faster and have 
an area requirement similar to carry propagate adders. 
Among all the redundant adders had been studied, the 
4:2 compressor was the fastest one, presented the best 
exploitation of the logic resources within FPGA 
slices and the easiest way to adapt classical 
algorithms to efficiently fit FPGA resources [17]. Liu 
et al. (2009) different parallel prefix trees used in the 
design of an end-around carry (EAC) adder targeting 
FPGA technology [18].  

Kamp et al. (2009) introduced adders with a 
redundancy in representation to eliminate carry 
propagation, providing near constant addition delay 
irrespective of the operand width [19]. Rani et al. 
(2009) introduced a fast adder based on Quaternary 
Signed Digit (QSD) number system. In QSD, each 
digit can be represented by a number from -3 to 3 and 
carry free addition and other operations on a large 
number of digits such as 64, 128, or more can be 
implemented with constant delay and less complexity 
[20].  

Bystritskaya et al. (2010) investigated 36-bit 
ripple-carry, carry-skip, carry-select and carry-look-
ahead adders intended for using in field 
programmable gate arrays. This study showed that 
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36-bit ripple carry adder has the maximal delay but, 
in spite of its minimal size, parameter β (β equals to a 
product of maximal delay and a total number of 
transistors of adder) is maximal, i.e. the advantage in 
area does not compensate for the loss in speed. 
Carry-select adder has maximal parameter β amongst 
the remaining adders: its size is maximal, but speed is 
less than that shown by carry-look-ahead adder. The 
usage of such adder is not profitable in presence of 
any limiting factors [21]. 

Bhattacharjee et al. (2011) did a study on 
low power arithmetic circuits for digital signal 
processing (DSP) applications in respect to delay, 
power requirement and implementation costs of the 
different 8, 16, 32 and 64 bit circuits that can be 
realized for implementing the basic fixed-point 
arithmetic units in FPGA [22]. Nguyen et al. (2011) 
did a study on FPGA-specific arithmetic 
optimizations for the mapping of carry select and 
carry-increment adders targeting the hardware carry 
chains of FPGAs. Different trade-offs between 
latency and area was explored [23]. 

Preußer et al. (2011) presented the carry-
compact addition scheme. While its central concept 
was inspired by the carry look-ahead addition, it was 
distinguished by its internal use of compacted 
pseudo-addends and its selective formation of 
compaction groups. A carry-compact addition 
already outperforms the basic ripple-carry adder for 
operand widths starting at 50 bits [24]. 

Martinez et al. (2012) introduced a fault 
tolerant parallel-prefix adder with capability of both 
fault detection and correction. This design was using 
a Sparse Kogge-Stone (SKS) Adder. In figure 7 red 
highlighted parts shows the error correction and 
detection logic [25]. 
 

 
 

Figure 7: Block diagram of Fault Tolerant Sparse 
Kogge-Stone Adder 

 
 

4. Conclusion 
 The recent growth in the number of 
available resources on FPGAs makes them excellent 
candidates in many computing applications. FPGA 
can be used for the applications that require high 
speed, high precision floating point arithmetic. At 
this article the state of art techniques in FPGA-Based 
Adders was discussed. 
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