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1. Introduction 

In recent past, the well-known computational 
methods such as finite difference method (FDM), 
finite element method (FEM), and boundary element 
method (BEM) etc have been applied for the flow 
field calculations around bodies. Out of these 
methods, BEM is a modern numerical technique in 
which only the boundary of the body under 
consideration is discretized in to different type of 
elements. BEM is well-suited to problems where 
domain is exterior to the boundary, as in the case of 
flow past bodies. The most important features of 
BEM is the much smaller system of equations and 
considerable reduction in data, which are essential to 
run a computer program efficiently. That is why; 
BEM is more accurate, efficient and economical than 
other domain methods. The BEM can be classified 
into two categories i.e. direct and indirect. (see 
Brebbia and Walker, 1978 & 1980, Ramsey, 1942, 
Milne-Thomson, 1968, & Kellogge, 1929). The 
direct and indirect methods have been used in the 
past for flow field calculations around bodies 
(Morino 1975, Hess & Smith, 1967, Kohr, 2000, 
Luminita, 2008, Muhammad, 2009; Mushtaq, 2008, 
2009, 2010, 2011& 2012). Most of the work on fluid 
flow calculations using boundary element methods 
has been done in the field of incompressible flow. 
Very few attempts have been made on flow field 
calculations using boundary element methods in the 
field of compressible flow. In this paper, the DBEM 
has been used for the solution of inviscid 
compressible flow around a Joukowski aerofoil.  

 
2. Mathematical Formulation of Steady and 

Inviscid Compressible Flow 
We know that equation of motion for two – 

dimensional, steady, irrotational, and isentropic flow 
(Mushtaq, 2010, 2011 & 2012, Shah, 2011) is 

( 1 – Ma 2 ) 
 2 

 X 2 + 
 2 

 Y 2  =  0 (1) 

where Ma is the Mach number and  is the total 
velocity potential of the flow. Here X and Y are the 
space coordinates. 

Using the dimensionless variables,  x  =  X ,   

y =  Y, where  = 1 – M a 2 ,  
equation (1) becomes 

 2 

 x 2  + 
 2 

 y 2   =  0 

or  2   =  0 (2) 
which is Laplace’s equation.  
 
3. Steady and Inviscid Compressible Flow Past a 

Joukowski Aerofoil 
Consider the flow past a Joukowski aerofoil and 

let the onset flow be the uniform stream with velocity  
U  in the positive direction of the  
x – axis as shown in figure (1) . 

 
 
 
 
 
 
 
 
Figure 1: Flow past a Joukowski aerofoil. 

  
Exact Velocity 

The magnitude of the exact velocity distribution 
over the boundary of a Joukowski aerofoil is given by 
[Chow, 1979; Mushtaq, 2011 & 2012] 
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where  r  =  radius of the cylinder,      
a  =  Joukowski transformation constant 
z  =  x + i y,     z 1  =  b + i c ,      

b  =  a – r 2 – c 2  
In Cartesian coordinates the  exact velocity 

becomes 

[[{(x – b)2 + (y – c)2}
2
 – r2 {(x – b)2 – (y – c)2} 

      + 2 c ( y – c ) {(x – b)2 + (y – c)2}]
2
  

      + [2 c (x – b) {(x – b)2 + (y – c)2}  

      + 2 r2 (x – b) (y – c)]
2
]

 1/2

  
V = U ––––––––––––––––––––––––––––––––– 

[(x – b)2 + (y – c)2]
2
  

  
[(x2 + y2)2 – a2 (x2 – y2)]

2
 + 4 a4 x2 y2

(x 2 – y2 – a2)2 + 4 x2 y2   

 Boundary Conditions 
Now the condition to be satisfied on the 

boundary of a Joukowski aerofoil is 

 
 
 n

  =  0 (3) 

where    is the total velocity potential. 
Now the total velocity potential    is the sum of the 
perturbation velocity potential   j . a  where the 

subscript  j . a  stands for Joukowski aerofoil and the 
velocity potential of the uniform  
stream   u . s . (Mushtaq, 2010, 2011, & 2012). 

i.e.   =   u . s +  j . a  (4) 

or 
 
 n

  =  
  u . s

 n
 + 

  j . a

 n
  (5) 

From equations (3) and (5) , we get 
  j . a

 n
 + 

  u .s

 n
  =  0 

or 
  j . a

 n
  =  – 

  u . s

 n
  (6) 

But the velocity potential of the uniform stream   is 
given by [see Milne – Thomson, 1968 & Shah, 2008 
& Mushtaq,2008,2009, 2010, 2011, &2012] 

  u . s = – U x  (7) 

  = – U 
 x
 n

  

  = – U ( 
^
n . 

^
i  )  (8) 

Thus from equations (6) and (8), we get 
 u j . a

 n
  =  U ( 

^
n . 

^
i  )  (9) 

Now from the figure (2) 

A  =  ( x 2 – x 1 ) 

^
i  + ( y

 2
 – y

 1
 ) 

^
j   

 
 
 
 
 
 
 
 

Figure 2 
Therefore the unit vector in the direction of the vector  

A  is given by 


A  =  

( x 2 – x 1 ) 
^
i  + ( y

 2
 – y

 1
 ) 

^
j

( x 2 – x 1 )
 2 + ( y

 2
 – y

 1
 ) 2  

The outward unit normal vector  
^
n  to the vector  


A  is given by 

^
n  =  

– ( y
 2
 – y

 1
 ) 

^
i  + ( x 2 – x 1 ) 

^
j

( x 2 – x 1 )
 2 + ( y

 2
 – y

 1
 ) 2   

Thus   
^
n . 

^
i  = 

( y
 1
 – y

 2
 )

( x 2 – x 1 )
 2 + ( y

 2
 – y

 1
 ) 2   (10) 

From equations (9) and (10) , we get 

 
  j . a

 n
  =  U 

( y
 1
 – y

 2
 )

( x 2 – x 1 )
 2 + ( y

 2
 – y

 1
 ) 2  

 (11) 
Equation (11) is the boundary condition which 

must be satisfied over the boundary of a Joukowski 
aerofoil.   
 Equation of Direct Boundary Element 

Method 
The equation of DBEM for two–dimensional 

flow [see Mushtaq, 2008, 2009, 2010, 2011 & 2012] 
is : 
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where  c i = 0     when  i  is  exterior to   

  = 1     when  i  is  interior to   

  = 
1
2     when  i  lies on    and    is  

           smooth. 
 Matrix Formulation with Constant Element 

Approach 
 The equation (12) for the DBEM can be written 
in the discretized form as 
– c i  i + 

m


j = 1

  


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
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The integrals in equation (13) on the elements can be 
calculated numerically except the element on which 
the fixed point  ‘i’  is located.  For this element the 
integrals are calculated analytically.  Denoting the 

integrals on the L.H.S. of equation (13) by  
^
H i j  and 

that on the R.H.S. by Gij, then 

where  
^
H i j  =  

 


j – i
  


 n

  




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1
2 

 log 
1
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and   G i j  =  

 

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1

2 
 log 



 

1
r  d   (15) 

For the case of that element on which the fixed point 
‘i’ is lying, these integrals have been calculated [ see 
Mushtaq, 2008, 2009,2011 & 2012]. 
Thus equation (13) can be written as 

– c i  i + 

m


j = 1

  
^
H i j  j +    =  

m


j = 1

  G i j 
  j

 n
  

  (16) 
Defining 

 H i j  =  




 

^
H i j      when   i    j

^
H i j – c i     when   i  =  j

  

Equation (16) takes the form 

 

m


j = 1

  H i j  j +    =  

m


j = 1

  G i j 
  j

 n
  

which can be expressed in matrix form as 
 [H] {U}  =  [G] {Q} (17) 

Since  
 
 n

  is specified at each node of the element, 

the values of the perturbation velocity potential    
are found at each node on the boundary via equation 
(17).  The total potential    is then found from 
equation (4) which will then be used to calculate the 
velocity on the symmetric aerofoil. 
The velocity midway between two nodes on the 
boundary can then be approximated by using the 
formula 

Velocity 

V  =  

k + 1 – k

Length from node  k  to  k + 1 (18) 

 Process of Discretization 
Now for the discretization of the boundary of the 

Joukowski aerofoil, the coordinates of the extreme 
points of the boundary elements can be generated 
within computer programme using Fortran language 
as follows: 

Divide the boundary of the circular cylinder into  
m  elements in the clockwise direction by using the 
formula. 

 k  =  [ ( m + 3 ) – 2 k ] 

m ,      

               k  =  1 , 2 , ……. , m  (19) 
Then the extreme points of these  m  elements of 

circular cylinder are found by  
 k  =  – b + r cos  k  

 k  =  c + r sin  k  

Now by using Joukowski transformation  

z  =   + 
a 2


  

the extreme points of the Joukowski aerofoil are 

x k  =   k 







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2
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2
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a 2
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2
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2
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          where  k  =  1 , 2 , ……. , m . 
The coordinates of the middle node of each 

boundary element are given by 




x m  =  

x k + x k + 1

2

y m  =  
y k + y k + 1

2

              

         k , m  =  1 , 2 , ……. , n  (20) 
and therefore the boundary condition (11) in this 

case takes the form 
  j . a

 n
 =  

U 
( y

 1
 ) m – ( y

 2
 ) m

[ ( x 2 ) m – ( x 1 ) m ]
 2
 + [ ( y

 2
 ) m – ( y

 1
 ) m ]

 2  

 (21) 
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The following tables show the comparison of 
computed and analytical velocity distribution over 
the boundary of a Joukowski aerofoil  

for 8, 16, 32, and 64 boundary elements with constant 
element approach. 

 
 

Table (1) 
ELEMENT X Y R = X 2 + Y 2  VELOCITY EXACT VELOCITY 

1 -13.22 2.60 13.47 .80735E+00 .80488E+00 
2 -9.75 6.06 11.48 .19490E+01 .18878E+01 
3 -4.85 6.06 7.76 .19482E+01 .18886E+01 
4 -1.39 2.60 2.94 .80617E+00 .79986E+00 
5 -1.39 -2.29 2.68 .80588E+00 .71925E+00 
6 -4.85 -5.76 7.53 .19482E+01 .18086E+01 
7 -9.75 -5.76 11.33 .19490E+01 .18078E+01 
8 -13.22 -2.30 13.41 .80737E+00 .72490E+00 

 
Table (2) 

ELEMENT X Y R = X 2 + Y 2  VELOCITY EXACT VELOCITY 

1 -14.38 1.56 14.46 .39531E+00 .42990E+00 
2 -13.30 4.16 13.93 .11257E+01 .11506E+01 
3 -11.31 6.15 12.87 .16847E+01 .17026E+01 
4 -8.71 7.22 11.31 .19871E+01 .20020E+01 
5 -5.89 7.22 9.32 .19868E+01 .20025E+01 
6 -3.29 6.14 6.97 .16836E+01 .17033E+01 
7 -1.30 4.15 4.35 .11227E+01 .11487E+01 
8 -.22 1.55 1.57 .39395E+00 .41741E+00 
9 -.22 -1.25 1.27 .39290E+00 .33444E+00 
10 -1.30 -3.84 4.06 .11223E+01 .10686E+01 
11 -3.29 -5.84 6.71 .16836E+01 .16233E+01 
12 -5.89 -6.92 9.09 .19869E+01 .19225E+01 
13 -8.71 -6.92 11.13 .19872E+01 .19220E+01 
14 -11.31 -5.85 12.73 .16848E+01 .16226E+01 
15 -13.30 -3.86 13.85 .11258E+01 .10706E+01 
16 -14.38 -1.26 14.43 .39532E+00 .34992E+00 

 
Table (3) 

ELEMENT X Y R = X 2 + Y 2  VELOCITY EXACT VELOCITY 

1 -14.69 .88 14.72 .19670E+00 .23588E+00 
2 -14.41 2.31 14.59 .58254E+00 .62017E+00 
3 -13.85 3.65 14.33 .94599E+00 .98225E+00 
4 -13.04 4.86 13.92 .12731E+01 .13082E+01 
5 -12.01 5.89 13.38 .15512E+01 .15856E+01 
6 -10.80 6.70 12.71 .17697E+01 .18037E+01 
7 -9.46 7.26 11.92 .19202E+01 .19541E+01 
8 -8.03 7.54 11.01 .19968E+01 .20309E+01 
9 -6.57 7.54 10.00 .19967E+01 .20312E+01 
10 -5.14 7.25 8.89 .19197E+01 .19548E+01 
11 -3.80 6.70 7.70 .17689E+01 .18045E+01 
12 -2.59 5.89 6.43 .15499E+01 .15859E+01 
13 -1.56 4.85 5.10 .12712E+01 .13074E+01 
14 -.75 3.64 3.72 .94303E+00 .97909E+00 
15 -.19 2.28 2.29 .57662E+00 .61237E+00 
16 .10 .87 .87 .19624E+00 .21350E+00 
17 .10 -.55 .56 .19311E+00 .12550E+00 
18 -.19 -1.98 1.99 .57418E+00 .53113E+00 
19 -.75 -3.34 3.42 .94261E+00 .89879E+00 
20 -1.56 -4.55 4.81 .12711E+01 .12273E+01 
21 -2.59 -5.59 6.16 .15499E+01 .15059E+01 
22 -3.80 -6.40 7.44 .17689E+01 .17245E+01 
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23 -5.14 -6.95 8.65 .19197E+01 .18748E+01 
24 -6.57 -7.24 9.78 .19967E+01 .19512E+01 
25 -8.03 -7.24 10.81 .19969E+01 .19509E+01 
26 -9.46 -6.96 11.74 .19202E+01 .18741E+01 
27 -10.80 -6.40 12.56 .17697E+01 .17237E+01 
28 -12.01 -5.59 13.25 .15512E+01 .15056E+01 
29 -13.04 -4.56 13.82 .12731E+01 .12282E+01 
30 -13.85 -3.35 14.25 .94600E+00 .90226E+00 
31 -14.41 -2.01 14.55 .58255E+00 .54020E+00 
32 -14.69 -.58 14.70 .19670E+00 .15591E+00 

 
Table (4) 

ELEMENT X Y R = X 2 + Y 2  VELOCITY EXACT VELOCITY 

1 -14.77 .52 14.78 .98249E-01 .13805E+00 
2 -14.70 1.25 14.76 .29374E+00 .33324E+00 
3 -14.56 1.97 14.69 .48644E+00 .52562E+00 
4 -14.35 2.67 14.59 .67447E+00 .71333E+00 
5 -14.06 3.35 14.46 .85593E+00 .89459E+00 
6 -13.72 4.00 14.29 .10292E+01 .10676E+01 
7 -13.31 4.61 14.09 .11926E+01 .12308E+01 
8 -12.84 5.17 13.85 .13444E+01 .13826E+01 
9 -12.33 5.69 13.58 .14833E+01 .15214E+01 
10 -11.76 6.16 13.27 .16079E+01 .16461E+01 
11 -11.15 6.57 12.94 .17170E+01 .17552E+01 
12 -10.50 6.91 12.57 .18096E+01 .18479E+01 
13 -9.82 7.19 12.17 .18848E+01 .19232E+01 
14 -9.12 7.41 11.75 .19417E+01 .19804E+01 
15 -8.40 7.55 11.29 .19800E+01 .20188E+01 
16 -7.67 7.62 10.81 .19992E+01 .20382E+01 
17 -6.93 7.62 10.30 .19991E+01 .20384E+01 
18 -6.20 7.55 9.77 .19798E+01 .20192E+01 
19 -5.48 7.40 9.21 .19414E+01 .19810E+01 
20 -4.78 7.19 8.63 .18842E+01 .19239E+01 
21 -4.10 6.91 8.04 .18089E+01 .18487E+01 
22 -3.45 6.56 7.42 .17161E+01 .17559E+01 
23 -2.84 6.15 6.78 .16068E+01 .16466E+01 
24 -2.28 5.69 6.13 .14819E+01 .15216E+01 
25 -1.76 5.17 5.46 .13428E+01 .13821E+01 
26 -1.29 4.60 4.78 .11906E+01 .12295E+01 
27 -.88 3.99 4.08 .10268E+01 .10652E+01 
28 -.54 3.34 3.38 .85289E+00 .89058E+00 
29 -.26 2.66 2.67 .67049E+00 .70708E+00 
30 -.04 1.95 1.95 .48092E+00 .51583E+00 
31 .11 1.21 1.21 .28468E+00 .31686E+00 
32 .21 .50 .54 .10199E+00 .10809E+00 
33 .23 -.17 .29 .99324E-01 .49335E-01 
34 .13 -.90 .90 .27830E+00 .23185E+00 
35 -.04 -1.64 1.64 .47814E+00 .43395E+00 
36 -.26 -2.35 2.37 .66932E+00 .62622E+00 
37 -.54 -3.04 3.08 .85227E+00 .81015E+00 
38 -.88 -3.69 3.79 .10264E+01 .98499E+00 
39 -1.29 -4.30 4.49 .11903E+01 .11494E+01 
40 -1.76 -4.87 5.17 .13426E+01 .13021E+01 
41 -2.28 -5.39 5.85 .14819E+01 .14416E+01 
42 -2.84 -5.85 6.51 .16068E+01 .15666E+01 
43 -3.45 -6.26 7.15 .17161E+01 .16760E+01 
44 -4.10 -6.61 7.78 .18089E+01 .17687E+01 
45 -4.78 -6.89 8.39 .18842E+01 .18440E+01 
46 -5.48 -7.10 8.97 .19414E+01 .19010E+01 
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47 -6.20 -7.25 9.54 .19798E+01 .19392E+01 
48 -6.93 -7.32 10.08 .19992E+01 .19584E+01 
49 -7.67 -7.32 10.60 .19992E+01 .19582E+01 
50 -8.40 -7.25 11.09 .19800E+01 .19388E+01 
51 -9.12 -7.11 11.56 .19418E+01 .19004E+01 
52 -9.82 -6.89 12.00 .18848E+01 .18432E+01 
53 -10.50 -6.61 12.41 .18096E+01 .17679E+01 
54 -11.15 -6.27 12.79 .17171E+01 .16752E+01 
55 -11.76 -5.86 13.14 .16079E+01 .15660E+01 
56 -12.33 -5.39 13.45 .14833E+01 .14414E+01 
57 -12.84 -4.87 13.74 .13444E+01 .13026E+01 
58 -13.31 -4.31 13.99 .11926E+01 .11508E+01 
59 -13.72 -3.70 14.21 .10292E+01 .98766E+00 
60 -14.06 -3.05 14.39 .85597E+00 .81461E+00 
61 -14.35 -2.37 14.54 .67441E+00 .63336E+00 
62 -14.56 -1.67 14.65 .48646E+00 .44564E+00 
63 -14.70 -.95 14.73 .29374E+00 .25327E+00 
64 -14.77 -.22 14.78 .98238E-01 .58082E-01 

 
 
 
 
 
 
 

 
Graph 1: Comparison of computed and analytical 
velocity distributions over the boundary of a 
Joukowski aerofoil using upper 4 values of 8 
boundary elements with direct constant element 
approach for  r =7.5,  a=0.2,  c=0.15,  and  Ma=0.7. 

 
 
 
 
 
 

 
 
Graph 2: Comparison of computed and analytical 
velocity distributions over the boundary of a 
Joukowski aerofoil using lower 4 values of 8 
boundary elements with direct constant element 
approach for  r=7.5,  a=0.2,  c=0.15,  and  Ma=0.7. 

 
 
 
 
 
 

 
 
Graph 3: Comparison of computed and analytical 
velocity distributions over the boundary of a 
Joukowski aerofoil using upper 8 values of 16 
boundary elements with direct constant element 
approach for  r=7.5,  a=0.2,  c=0.15,  and  Ma=0.7. 

 
 
 
 
 
 

Graph 4: Comparison of computed and analytical 
velocity distributions over the boundary of a 
Joukowski aerofoil using lower 8 values of 16 
boundary elements with direct constant element 
approach for  r=7.5,  a=0.2,  c=0.15,  and  M =0.7. 

 
 
 
 
 
 
 
 

Graph 5: Comparison of computed and analytical 
velocity distributions over the boundary of a 
Joukowski aerofoil using upper 16 values of 32 
boundary elements with direct constant element 
approach for r = 7.5, a = 0.2, c = 0.15, and Ma = 0.7. 

 
 
 
 
 
 
 

 
Graph 6: Comparison of computed and analytical 
velocity distributions over the boundary of a 
Joukowski aerofoil using lower 16 values of 32 
boundary elements with direct constant element 
approach for r = 7.5, a = 0.2, c = 0.15, and Ma = 0.7. 
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Graph 7: Comparison of computed and analytical 
velocity distributions over the boundary of a 
Joukowski aerofoil using upper 32 values of 64 
boundary elements with direct constant element 
approach for r = 7.5, a = 0.2, c = 0.15, and Ma = 0.7. 

 
 
 
 
 

 
 
Graph 8: Comparison of computed and analytical 
velocity distributions over the boundary of a 
Joukowski aerofoil using lower 32 values of 64 
boundary elements with direct constant element 
approach for r = 7.5, a = 0.2, c = 0.15, and Ma = 0.7. 
 
4. Conclusion 

We calculate the steady and inviscid 
compressible flow past a Joukowski aerofoil using 
DBEM with constant element approach. The 
calculated flow velocities obtained using this method 
is compared with the analytical solutions for flow 
over the boundary of a Joukowski aerofoil. It is found 
that from tables and graphs, the computed results 
obtained by this method are good in agreement with 
the analytical ones for the body under consideration 
and the accuracy of the result increases due to 
increase of number of boundary elements. 
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