On some lower bounds and approximation formulas for \boldsymbol{n} !

Mustafa A. OBAID
King Abdulaziz University, Faculty of Science, Mathematics Department, P. O. Box 80111, Jeddah 21589, Saudi Arabia.
drmobaid@yahoo.com

Abstract: In this paper, we present the following new inequality of n ! $n!>\sqrt{2 \pi} n^{n+1 / 2} e^{-n+\sum_{r=0}^{\infty}\left\{(2 n+2 r+1) \tanh ^{-1}\left(\frac{1}{2 n+2 r+1}\right)-1\right\}} n \in \mathbb{N}$. Also, we deduce that the approximation formula $n!\sim \sqrt{2 \pi} n^{n+1 / 2} e^{-n+\sum_{k=1}^{m} \frac{2^{-2 k}}{2 k+1} \varsigma(2 k, n+1 / 2)}$ has rate of convergence equal to $n^{-2 m-1}$ for $m=1,2,3, \cdots$. Thus, we can choose the approximation formula that we want it convergence to n ! by a known rate.
[Mustafa A. OBAID. On some lower bounds and approximation formulas for n! Life Sci J 2012;9(3):743-] (ISSN:1097-8135). http://www.lifesciencesite.com. 105

Key Words: Bounds of n ! rate of convergence, approximation formulas.
MSC 2010 classification : 33B15, 26D07, 41A60.

1 Introduction.

There are many different upper and lower bounds for n ! presented by several authors
[4, 3, 21, 20, 17, 8, 9]. Most bounds are of the form $\sqrt{2 n \pi}\left(\frac{n}{e}\right)^{n} e^{a_{n}}<n!<\sqrt{2 n \pi}\left(\frac{n}{e}\right)^{n} e^{b_{n}}$,
Where a_{n} and b_{n} tend to zero through positive values. P. R.
Beesack [2] presented the following important result:

Theorem 1.

$$
\begin{equation*}
\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{a_{n}}<n!<\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{b_{n}} \tag{2}
\end{equation*}
$$

$n \geq 1$,
where the two sequences $a_{n}, b_{n} \rightarrow 0$ as $n \rightarrow \infty$ and satisfy
$a_{n}-a_{n+1}<\sum_{k=1}^{\infty} \frac{1}{2 k+1} \frac{1}{(2 n+1)^{2 k}}$
$<b_{n}-b_{n+1}$.
For the q-factorial which is defined by [5]

$$
[n]_{q}!=n_{q}[n-1]_{q} \cdots[2]_{q}[1]_{q},
$$

where $[x]_{q}=\frac{1-q^{x}}{1-q}$ is the q-number of x, Mansour and et al [6] presented the following q-analog of the Beesack's result (2):

Theorem 2. The q-factorial $[n]_{q}$! satisfies the double inequality
$(q, q)_{\infty}(1-q)^{-n} e^{f_{q}(n+1)}<[n]_{q}!(q ; q)_{\infty}(1-$
$q)^{-n} e^{g_{q}(n+1)}, \quad n \geq 1 ; 0<q<1$
where $f_{q}(n)$ and $g_{q}(n)$ are two sequences tend to zero through positive values and satisfy

$$
\begin{align*}
& f_{q}(n)-f_{q}(n+1)-\log \left(1-q^{n}\right)<g_{q}(n)- \\
& g_{q}(n+1), \quad n \geq 1 . \tag{5}
\end{align*}
$$

Recently, Mansour and et al [7] presented a new proof of Beesack's result (2) and deduced the following upper bounds of $n!$:
Theorem 3.

$$
\begin{gathered}
n!<\sqrt{2 \pi n}(n / e)^{n} e^{M_{n}^{[m]}} \quad n \in \mathbb{N} \\
M_{n}^{[m]}=\frac{1}{2 m+3} \\
\\
{\left[\frac{1}{4 n}+\sum_{k=1}^{m} \frac{2 m-2 k+2}{2 k+1} 2^{-2 k} \zeta\left(2 k, n+\frac{1}{2}\right)\right]}
\end{gathered}
$$

$$
m=1,2,3, \cdots
$$

where $\varsigma(x)$ is the Riemann Zeta function.
In this paper, we will use the technique of [7] to introduce a family of lower bounds of $n!$. Hence, we will deduce some new approximation formulas for large n ! and we will study their rates of convergence.

2 A New family of lower bounds of \boldsymbol{n} !

To find some lower bounds of the series
$\sum_{k=1}^{\infty} \frac{1}{2 k+1} \frac{1}{(2 n+1)^{2 k}}$ we observe firstly that

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{1}{2 k+1} \frac{1}{(2 n+1)^{2 k}} \\
&>>\sum_{\substack{k=1}}^{m} \frac{1}{(2 k+1)(2 n+1)^{2 k}}, \quad m \\
&=1,2,3, \cdots
\end{aligned}
$$

So, we can consider the recurrence relation

$$
L_{n, m}-L_{n+1, m}=\sum_{k=1}^{m} \frac{1}{(2 k+1)(2 n+1)^{2 k}}
$$

which has the following solution form

$$
\begin{aligned}
& L_{n, m}=L_{0, m}-\sum_{i=1}^{n-1}\left(\sum_{k=1}^{m} \frac{1}{(2 k+1)(2 i+1)^{2 k}}\right) \\
& \quad=L_{0, m}-\sum_{k=1}^{m} \frac{1}{2 k+1}\left(\sum_{i=1}^{n-1} \frac{1}{(2 i+1)^{2 k}}\right)
\end{aligned}
$$

By using the relation [18]

$$
\begin{gathered}
\sum_{i=1}^{n-1} \frac{1}{(2 i+1)^{2 k}}=-1-\left(2^{-2 k}-1\right) \varsigma(2 k) \\
-2^{-2 k} \varsigma(2 k, n+1 / 2) \\
=-1-\frac{(-1)^{k-1}\left(1-2^{2 k}\right)}{2(2 k)!} B_{2 k} \pi^{2 k}+2^{-2 k} \varsigma(2 k, n+1 / 2)
\end{gathered}
$$

where $\varsigma(x)$ is the Riemann Zeta function and $B_{r}^{\prime} s$ are Bernoulli's numbers, we get

$$
\begin{aligned}
L_{n, m}=L_{0, m}+\sum_{k=1}^{m} & \frac{1}{2 k+1}(1 \\
& +\frac{(-1)^{k-1}\left(1-2^{2 k}\right)}{2(2 k)!} B_{2 k} \pi^{2 k} \\
& \left.+2^{-2 k} \varsigma(2 k, n+1 / 2)\right)
\end{aligned}
$$

$$
\sum_{i=1}^{\substack{\text { Also } \\ \infty}} \frac{1}{(2 i+1)^{2 k}}=\frac{(-1)^{k-1}\left(2^{2 k}-1\right)}{2(2 k)!} B_{2 k} \pi^{2 k}-1 .
$$

Hence, we can choose

$$
\begin{equation*}
L_{0, m}=\sum_{k=1}^{m} \frac{1}{2 k+1}\left(\varsigma(2 k)\left(1-2^{-2 k}\right)-1\right) \tag{8}
\end{equation*}
$$

which satisfies

$$
\lim _{n \rightarrow \infty} L_{n, m}=0, \quad m=1,2,3, \cdots
$$

Then we obtain the following result:

Theorem 4.

$$
\begin{equation*}
n!>\sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n+\sum_{k=1}^{m} \frac{2^{-2 k}}{2 k+1} \varsigma\left(2 k . n+\frac{1}{2}\right)} \tag{9}
\end{equation*}
$$

$n, m \in \mathbb{N}$
where $\varsigma(x)$ is the Riemann Zeta function. In the following result, we will prove that the increasing of the value of m in the lower bound $L_{n, m}$ will improve its value.

Lemma 2.1.

$L_{n, m+1}>L_{n, m} \quad m, n=1,2,3, \cdots .$.
Proof.
From [9] we get

$$
\begin{aligned}
& L_{n, m+1}=\sum_{k=1}^{m+1} \frac{2^{-2 k}}{2 k+1} \varsigma\left(2 k, \frac{n+1}{2}\right) \\
= & L_{n, m}+\frac{2^{-2 m-2}}{2 m+3} \varsigma(2 m+2, n+1 / 2)
\end{aligned}
$$

But $\varsigma\left(2 m+2, n+\frac{1}{2}\right)>0$, then

$$
L_{n, m+1}-L_{n, m}>0
$$

Theorem 5.

$$
\begin{gathered}
n!>\sqrt{2 \pi} n^{n+1 / 2} \\
e^{-n+\sum_{r=0}^{\infty}\left\{(2 n+2 r+1) \tanh ^{-1}\left(\frac{1}{2 n+2 r+1}\right)-1\right\}} \quad n \in \mathbb{N}(11)
\end{gathered}
$$

Proof. Using (9) at m tends to ∞, we obtain

$$
L_{n, \infty}=\sum_{k=1}^{\infty} \frac{2^{-2 k}}{2 k+1} \varsigma(2 k, n+1 / 2)
$$

But

$$
\varsigma(2 k, n+1 / 2)=\sum_{r=0}^{\infty} \frac{1}{(n+1 / 2+r)^{2 k}}
$$

then

$$
L_{n, \infty}=\sum_{r=0}^{\infty} \sum_{k=1}^{\infty} \frac{1}{\left(2 n+2 r+1^{2 k}(2 k+1)\right.}
$$

Using the relation

$$
\tanh ^{-1} x=\sum_{t=0}^{\infty} \frac{x^{2 t+1}}{2 t+1} ; \quad|x|<1
$$

then we get

$$
L_{n, \infty}=\sum_{r=0}^{\infty}\left\{\begin{array}{l}
(2 n+2 r+1) \tanh ^{-1} \\
\left((2 n+2 r+1)^{-1}\right)-1
\end{array}\right\}
$$

3 Convergence rate of the approximation formula

$$
n!\sim \sqrt{2 \pi} n^{n+1 / 2} e^{-n+\sum_{k=1}^{m} \frac{2^{-2 k}}{2 k+1} \varsigma(2 k, n=1 / 2}
$$

C. Mortici [10]-[16] presented a new method to measure the convergence rate of some asymptotic expansions. Also, he use this method to accelerate and construct some approximation formulas. The following lemma contains the Mortici result.

Lemma 3.1.

If $\left(\varphi_{n}\right)_{n \geq 1}$ is convergent to zero and there exists the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{k}\left(\varphi_{n}-\varphi_{n+1}\right)=l \in \mathbb{R} \tag{12}
\end{equation*}
$$

with $k>1$, then there exists the limit:

$$
\lim _{n \rightarrow \infty} n^{k-1} \varphi_{n}=\frac{l}{k-1}
$$

To measure the convergence rate of the formula
$\sqrt{2 \pi n}(n / e)^{n} e^{L_{n, m}}$, define the sequence $\left(\varphi_{n}\right)_{n \geq 1}$ by the relation
$n!=\sqrt{2 \pi n}(n / e)^{n} e^{L_{n, m+\varphi_{n}} ; ~} n=1,2,3, \cdots$
The value of the approximation formula will be better whenever $\left(\varphi_{n}\right)_{n \geq 1}$ convergence to zero faster. Using the relation (13) we get
$\varphi_{n}=\ln n!-\ln \sqrt{2 \pi}-(n+1 / 2) \ln n+n-L_{n, m}$ And hence
$\varphi_{n}-\varphi_{n+1}=(n+1 / 2) \ln (1+1 / n)-1+$ $L_{n+1, m}-L_{n, m}$.
By using the expansion [1]
$(n+1 / 2) \ln \left(1+\frac{1}{n}\right)-1=\sum_{k=1}^{\infty} \frac{1}{2 k+1} \frac{1}{(2 n+1)^{2 k}}$
and the relation [7], we have

$$
\varphi_{n}-\varphi_{n+1}=\sum_{k=m+1}^{\infty} \frac{1}{(2 k+1)(2 n+1)^{2 k}}
$$

Then

$$
\begin{gathered}
\lim _{n \rightarrow \infty} n^{2(m+1)}\left(\varphi_{n}-\varphi_{n+1}\right)=\frac{1}{(2 m+3) 2^{2(m+1)}} \\
n, m=1,2,3, \cdots \quad(15)
\end{gathered}
$$

Now we get the following result according Mortici result:

Theorem 6. The rate of convergence of the sequence φ_{n} is equal to $n^{-2 m-1}$, since

$$
\lim _{n \rightarrow \infty} n^{2 m+1} \varphi_{n}=\frac{1}{(2 m+1)(2 m+3) 2^{2(m+1)}}
$$

References

[1] E. Artin, The Gamma function, translated by M.Butler, Holt, Rinehart and Winston, New York, 1964.
[2] P. R. Beesack, Improvement of Stirling's formula by elementary methods, Univ. Beograd, Publ. Elektrotenhn, Fak. Ser. Mat. Fiz. No. 274-301, 17-21, 1969.
[3] E. Cesa`ro, Elements Lehrbuch der algebraischen analysis und der Infinitesimalrechnung, Leipzig, 1922.
[4] P. M. Hummel, A note on Stirling's formoula, Amer. Math. Monthly, 42(2): 97-99, 1940.
[5] T. Kim, Lee-C. Jang and Heungsu Yi, A note on the modified q-Bernstein polynomials, Discrete Dynamics in Nature and Society Vol. 2010, Article ID 706483, 12 pages.
[6] M. Mansour and M. A. Obaid, Bounds of qfactorial $[n]_{q}!$, Ars Combinatoria, Vol. CII, 313-319, 2011.
[7] \} M. Mansour, M. A. Alghamdi and Ravi P. Agarwal, New upper bounds of $n!$, Journal of Inequalities and Applications, 2012, 2012:27.
[8] A. J. Maria, A remark on Striling's formula, Amer. Math. Monthly, 72, 1096-1098, 1965.
[9] R. Michel, On Stirling's formula, Amer. Math. Monthly, 109(4):388-390, 2002.
[10] C. Mortici, An ultimate extremely accurate formula for approximation of the factorial function. Archiv der Mathematik (Basel) 93(1), 37-45, 2009.
[11] C. Mortici, Product approximations via asymptotic integration. Am. Math. Monthly 117, 434-441, 2010.
[12] C. Mortici, New approximations of the gamma function in terms of the digamma function. Appl. Math. Lett. 23, 97-100, 2010.
[13] C. Mortici, New improvements of the Stirling formula. Appl. Math. Comput. 217(2), 699704, 2010.
[14] C. Mortici, Best estimates of the generalized Stirling formula. Appl. Math. Comput. 215(11), 4044-4048, 2010.
[15] C. Mortici, A class of integral approximations for the factorial function. Comput. Math. Appl. 59(6), 2053-2058, 2010.
[16] C. Mortici, Ramanujan formula for the generalized Stirling approximation. Appl. Math. Comput. 217(6), 2579-2585, 2010.
[17] T. S. Nanjundiah, Note on Stirling's formula, Amer. Math. Monthly, 66, 701-703, 1965.
[18] E. D. Rainville, Special functions, The Macmillan company, 1965.
[19] S. Ramanujan, The lost notebook and other unpublished papers, Introduced by G. E. Andrews, Narosa Publishing House, New Delhi, 1988.
[20] H. Robbins, A remark on Stirling's formula, Amer. Math. Monthly, 62, 26-29, 1955.
[21] J. V. Uspensky, Introduction to mathematical probability, McGraw Hill, New York, 1937.

6/23/2012

