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Introduction 
 Direct method is a numerical method which is in 
the form of a statement which gives the values of 
unknown variables at the field point under discussion 
in terms of a complete set of the entire boundary data. 
This method is used in different areas like solid and 
fracture mechanics, fluid dynamics and potential 
theory etc. [1]. The initial work for potential flow 
calculations was done by Hess and Smith ([2], [3]). 
Indirect method is popular due to its simplicity 
because the discretisation only takes place on the 
surface of the body. The direct method was applied 
for potential flow calculation in the past by Morino 
[4], Muhammad [8] and Mushtaq [9]. 

 

Calculation of Hyperbolic Flow Past a 
Sphere 
 Let a sphere of radius ‘a’ be taken as stationary 
and let  U  be the velocity of a uniform stream 
flowing in the positive direction of x – axis as shown 
in figure 1 [5].  

 

 

 

 

 

 

 

 

 

 

Figure (1) 

 

The stream function in this case given by 
   =   x ( y 2 + z 2 )  
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Since  y 2 + z 2  =  r 2  
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Equation of Direct Boundary Element 
Method 
 The equation of direct boundary element method 
for three – dimensional problems is given by (see [6, 
7, 8, 9]). 
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Discretization of Sphere: 
 The surface of the sphere is discretized into 
quadrilateral elements. The scheme of discretization 
is as shown in the figure (2). 

 The direct boundary element method is applied 
to calculate the hyperbolic flow solution around the 
sphere for which the analytical solution is available  

 Consider the surface of the sphere in one octant 
to be divided into three quadrilateral elements by 
joining the centroid of the surface with the mid points 
of the curves in the coordinate planes as shown in 
figure (2) [7, 8, 9]. 

 Then each element is divided further into four 
elements by joining the centroid of that element with 
the mid–point of each side of the element. Thus one 
octant of the surface of the sphere is divided into 12 
elements and the whole surface of the body is divided 
into 96 boundary elements. The above mentioned 
method is adopted in order to produce a uniform 
distribution of element over the surface of the body .  

 

 

 

 

 

 

 

 

 

                              Figure (2) 
Figure (3) shows the method for finding the 

coordinate (xp, yp, zp) of any point P on the surface 

of the sphere. 
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Figure (3) 
From above figure, we have the following equation 

  
or in cartesian form 

 x
2

p + y
2

p + z
2

p  =  1 

xp (x1 – x2) + yp (y1 – y2) + zp (z1 – z2)  =  0 

xp (y1 z2 – z1 y2) + yp (x2 z1 – x1 z2) + zp (x1 y2 – x2 y1)  =  0 

 As the body possesses planes of symmetry, this 
fact may be used in the input to the program and only 
the non–redundant portion need be specified by input 
points. The other portions are automatically taken 
into account. The planes of symmetry are taken to be 
the coordinate planes of the reference coordinate 
system. The advantage of the use of symmetry is that 
it reduces the order of the resulting system of 
equations and consequently reduces the computing 
time in running a program. As a sphere is symmetric 
with respect to all three coordinate planes of the 
reference coordinate system, only one eighth of the 
body surface need be specified by the input points, 
while the other seven–eighth can be accounted for by 
symmetry. 

 The sphere is discretised into 96 and 384 
boundary elements and the computed velocity 
distributions are compared with analytical solutions 
for the sphere using Fortran programming. 
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Figure (4): Comparison of computed and analytical 
velocity distributions over the surface of the sphere 
using 96 boundary elements. 
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Figure (5): Comparison of computed and analytical 
velocity distributions over the surface of the sphere 
using 384 boundary elements. 

 
Conclusion 
 Direct boundary element method has been 
applied to calculate the hyperbolic flow past a sphere. 
The improvement in results gained by taking 384 can 
be seen from figures (4) and (5) and such 
improvement increases with increase in number of 
boundary elements. Moreover, the computed results 
are in good agreement with exact results at the top of 
a body under consideration.   
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