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Abstract: Potential functions and Fourier series method in the cylindrical coordinate system are employed to solve 

the problem of moving loads on the surface of a cylindrical bore in an infinite elastic medium. The steady-state 

dynamic equations of medium are uncoupled into Helmholtz equations, via given potentials. It is used that because 

of the superseismic nature of the problem, two mach cones are formed and opened toward the rear of the front in the 

medium. The stresses and displacements are obtained by using integral equations with certain boundary conditions. 

Finally, the dynamic stresses and displacements for step loads with axisymmetric and nonaxisymmetric cases are 

obtained and discussed in details via a numerical example. Moreover, effects of Mach numbers and poisson's ratio 

of medium on the values of stresses are discussed.  
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1. Introduction 

1.1 General Remarks  

       Moving loads on the surfaces have been 

investigated by many researchers. Investigation on 

dynamic stresses in solids is very significant in the 

study of dynamic strength of materials and in the 

design of underground structures subject to ground 

blasting waves. A related but considerably simpler 

problem has been treated by Biot (1952), who 

considered space- harmonic axisymmetric standing 

waves and obtained a closed form solution. Another 

related problem was treated by Cole and Huth (1958), 

who considered a line load progressing with a 

velocity V on the surface of an elastic half- space. 

Because of the simpler geometry, they were able to 

obtain a solution in closed form. Adrianus (2002)  

investigated  the moving point load problem in soil 

dynamics with a view to determine the ground 

motion  generated by a high-speed train traveling on 

a poorly consolidated soil with low shear wave speed. 

M.C.M. Bakker (1999) revisited the nonaxisymmet-

rical boundary value problem of a point load of 

normal traction traveling over an elastic half-space. 

M.Rahman (2001) considered the problem of a line 

load moving at a constant transonic speed across the 

surface of an elastic half-space and derived solution 

of the problem by using the method of Fourier 

transform. Iavorskaia (1964) also studied diffraction 

of a plane longitudinal wave on circular cylinder. 

One basic method has been used for the solution of 

these problems, the solution is obtained by using an 

integral transform of the displacement potentials. The 

resulting transformed equations are then solved in 

terms of Hankel functions, and finally the stresses 

and displacements are found by inversion of the 

transformed quantities. In this paper the coefficients 

of the stresses and displacements are found by 

solving sets of coupled integral equations. 

       The waves are expanded into Fourier series in 

terms of the angle,   , around the opening. The 

stress field of the wave is written in terms of potential 

functions which satisfy the equations of motion. 

These equations decoupled via introducing the 

potential functions and reduced to Helmholtz 

equations that the potentials satisfy.  

       These potential functions are in integral form 

with unknown functions in the integrands. Therefore 

the Fourier series coefficients of the stresses and 

displacements are also in integral form with unknown 

integrands. The applied boundary tractions (the step 

loads) are expanded into a Fourier series in   and 

expressions for the stress and displacement 

components at points in the medium are derived for 

each term of the Fourier series as functions of the 

radial distance r from the cavity axis and the distance 

z behind the wave front. 

       The following three cases of step loads are 

considered: normal to the surface, tangential to the 

surface in the direction of the axis of the bore, and 

tangential to the circle of load application. These 

results can be used, by superposition, to determine 

the effects of other load patterns moving with the 

velocity V in the direction of the axis of the bore. 

Numerical solution of these equations gives the 

values of the unknown functions. These values can  
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then be used to find the stresses and displacements on 

the boundary and also anywhere in the medium. 

 

1.2  Problem Description 

      The object of this work is to obtain stresses and 

displacements in an elastic medium in the vicinity of 

a cylindrical cavity which is engulfed by a plane 

stress wave of dilatational travelling parallel to the 

axis of the cylinder, as shown in Figure 1. 

       The step load has an arbitrary distribution P (θ) 

along the circumference of the circle and moves with 

a velocity 21 CCV   ; therefore, the speed is 

superseismic with respect to both the dilatational and 

shear waves in the medium. Consequently, the 

disturbances which were initiated far behind the front 

on the boundary of the cavity cannot reach the 

vicinity of the wave front for some time after the 

incident wave passes.  

 
Figure 1. Moving step load 

 

       Moreover, because of the super seismic nature of 

the problem, it should be expected that two mach 

cones will be formed in the medium, as shown in 

Figure 2. These cones should open toward the rear of 

the front. Furthermore, there can be no stresses or 

displacements ahead of the leading front.  

       If a coordinate system is assumed to move along 

the cylinder with the wave front, it is seen that the 

state of stress at points close behind the wave front 

depends only on relative position of them with 

respect to the front. Thus, in the vicinity of the wave 

front, provided that the end of the cavity is far away, 

the problem may be treated as a steady-state case. In 

other words, in the moving coordinate system, the 

state of stress and displacement is independent of 

time. 

 

 

 

 

 

Figure 2. Geometry of the problem and the coordinate 

systems 

2. Governing equations and general solutions 
       Consider a cylindrical cavity of radius r = a in a 

linearly elastic, homogeneous, and isotropic medium 

referred to a fixed coordinate system  z,θ,r  whose 

origin lies on the axis of the cavity. 

A step load along the circle at z = -vt progresses 

along the interior of the cavity with a velocity V such 

that the stresses on the boundary r=a are:                  

 vt)z(U)θ(
1
σ

ar rr
σ 


 (1) 

 vt)z(U)θ(
2

σ
arrθ

σ 
  

(2) 

 vt)z(U)θ(
3

σ
arrz

σ 
  

(3) 

      Where the functions (θθ)σk   define the 

distribution of the applied load. To determine the 

steady state solution, a moving coordinate system (r ,

θ  ,z) is introduced such that:  

Vtzz,θθ,rr   (4) 

The following treatment is restricted to the case 

where the velocity V is greater than C1 and C2 , the 

respective propagation velocities of dilatational and 

equivoluminal waves in the medium. Hence 

1
C
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C

V
M

2
2

1
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ρ
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ρ
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
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The equations of motion in cylindrical coordinates, r , 

 , z, for an elastic medium, may be expressed in the 

following form: 
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Where the dilatation , Δ  , and the laplacian operator, 
2 , are given by: 

2

2

2

2

22

2
2

zθ

zθr

1

rr

1

r

z

u

θ

u

r

1

r

ru

r

ru
Δ




































 

(8) 

As mentioned earlier, the assumption of the existence 

of a steady-state case and trans-formation form r ,   

, z coordinates to r ,  , z results in elimination of 

the time variable, t , from the equations of motion. 
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This transformation is performed by the following 

relations, as given in relations (4): 

z
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Therefore equations (7) may be expressed as follows: 
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Stress components are given by 

r

ru
2μλΔrrσ






 

)
θ

θu

r

1

r

ru
(2μλΔθθσ






 

z

zu
2μλΔzzσ






 

)
θ

zu

r

1

z

θu
μ(θzσ

)
r

zu

z

ru
μ(rzσ

)
r

θu

r

θu

θ

ru

r

1
μ(rθσ































 

(10) 

Displacement components 
θ

u,
r

u  and
z

u  may be 

expressed in Fourier series: 
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Three potential functions are now introduced, 
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These equations may be obtained from the vector 

equation 

 curlφgradu  

Where   is the sum of two independent vectors as 

follows: 

ψcurl  

The vectors ψand  have only one non- zero 

component which is in the z- direction in both cases. 
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By substitution of the values given in equations (13) 

into the equations (9), it can be shown that the 

potential functions satisfy the modified wave 

equations. 
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(14) 

Stress components are expressed in Fourier series 

form as follows: 
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       Equations (11) and (15) may be substituted into 

equations (10), and as a result stress- displacement 

relations may be written for each term of the series:  
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Substitution of equations (13) into equations (16) and 

application of the differential equations (14) result in 

the following equations for stress components: 

 













nRn,

RRZn,RRn,ZZn,
2
1

2
2

rrn,
2

R

1

R

2n

2ψφ2φ2MM
μ

σa



 

 




























nRn,Zn,

2

RZn,

RRn,ZZn,
2
2

θθn,
2

R

1

R

2n
ψ

R

n
ψ

R

2

φ2φ2M
μ

σa



    ZZZn,
2
2ZZn,

2
1

2
2

zzn,
2

ψ1M2φ22MM
μ

σa
  

  RRn,ZZn,
2
2

Zn,RZn,nRn,
rθn,

2

21M

ψ
R

1
ψ

R

2n
φ

R

1
φ

R

2n

μ

σa

 




















  Zn,RZZn,
2
2RZn,

rzn,
2

R

n
ψ2M2φ

μ

σa
  

  RZn,ZZn,
2
2Zn,

θzn,
2

ψ
R

n
2Mφ

R

2n

μ

σa


 

(17) 

        Where the second set of subscripts of 

nnn andψ,φ 
 

represent the partial derivatives of 

these functions. R and Z are the dimensionless 

variables form:  
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The values M1 and M2 are defined as follows: 
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The differential equations (14) may be written in the 

following form: 
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It is seen that these equations have the same general 

form as the differential equations of the cylindrical 

waves obtained in reference (13). Therefore solutions 

of equations (20) may be obtained in a manner 

similar to that in reference (13). These solutions are 

given in integral form as follows (see Appendix A for 

verification of the solutions): 
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          From consideration of the fact that the 

disturbances are zero ahead of the wave front, it is 

seen that the functions fn , gn and hn are zero for the 

values of their arguments less than
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The integrals are then written with these limits: 
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3. Expressions of stresses and displacements 

   Substitution of equations (23) into equations (17) 

gives the following expressions for stress 

components. 
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Substitution of equations (23) into equations (13) 

gives the following expressions for displacement 

components, 
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Where

         
ucoshRβZη

ucoshRβZη

22

11



 

And )(ηh,)(ηg),(ηf)h(η),g(η),f(η 2n2n1n221  and 

primes represent the derivatives of the functions with 

respect to their arguments. 
4. Boundary conditions 
   In order to satisfy the condition of a traction 

boundary at the face of the cavity, r=a , three of the 

stress components must satisfy the following 

boundary conditions: 



 u(Z)σσ

u(Z)σσ

u(Z)σσ

n3arrθn,

n2arrzn,

n1arrrn,













 (26) 

These equations are satisfied for each term n. The 

coefficients of the stress, rzn,rθn,rrn, σandσ,σ  are 

expressed in equations (24) in integral form. These 

integrals include the unknown functions 

)(ηhand)(ηg),(ηf 221   which are to be found by 

solving the set of three simultaneous integral 

equations. These values then may be substituted back 

into the equations (24) and (25) to find the stress 

components and displacement components of the 

waves at any point on the boundary or in the medium 

behind the move front. 

5. Solution of the Boundary Equations 

   Numerical solution of the boundary equations 

requires finding numerical values of the functions 

)(ηhand)(ηg),(ηf 221  .In the following para-

graph, the changes in variables are used. At the 

boundary, the radius R is fixed, R=1. Therefore the 

arguments of the functions handg,f   are: 

hucosβZ2η

coshuβZ1η

2

1




 (27) 

1kξ

2β

Z
2ξ,

1β

Z
1ξ:letWe   

(28) 

Where 21/ββK   . Equations (27) may be written 

as: 

 
 hucos1kξβ2η

coshu1ξβ1η

2

1




 

A new variable   is now introduced by the following 

relations: 

2ξ2ξ

dξ

husin

dξ
du

ξ1coshu







 (29) 

The limits of the integrals with this variable are as 

follows: 











122

11

kξξξ,uu

ξξ,uu
limitsUpper

0ξ,0ulimits,Low er

 (30) 

The upper limits are linear functions of Z and 1ξ ; 

therefore, in order to perform numerical integration, 

the longitudinal axis 1ξ  is divided into small steps. 

At every point along this axis the numerical 

integration is performed and at each step only one 

new value of the functions 
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)(ηhand)(ηg),(ηf 221   enters into the 

computations.  

As an example of the procedure of the numerical 

integration, the component of the stress in the radial 

direction is given symbolically below: 
H
rr

G
rr

F
rrrrn, IIIσ   (31) 
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(32) 

The integrals
 

H
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F
rr IandI,I at the p

th
 step are 

expressed by using the convolution theorem in 

summation form as follows: 
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 (33) 

 Where (f) , (g) and (h) are the unknown functions to 

be evaluated. 

    At this stage of integration the values (f)m , (g)m , 

(h)m are known for m=0 to p-1.The only unknowns in 

these expressions are (f)p , (g)p , and (h)p . Similar 

expressions are written for the other components of 

stress, at the p
th

 step. The boundary conditions are 

now in the form of a set of three simultaneous linear 

equations. Solution of this set results in the values of 

(f)p , (g)p , and (h)p . The procedure is then carried on 

to the (P+1)
th

 step; Similar operations are performed 

to find the values of (f)p+1 , (g)p+1 , and (h)p+1 . 

 As mentioned previously, when the values f, g and h 

are found at each step, these values are substituted 

into the expressions for 
zn,

uand
θn,

u,
rn,

u,  

θzn,
σ,

zzn,
σ,

θθn,
σ to compute the numerical 

values of these stresses and displacements in the 

medium. 
6. Numerical Results and Conclusion 

       For the non-axisymmetric loadings characterized 

by n > 0, numerical values of the stress components 

zθn,
σandzzn,σ,

θθn,
σ  at the cavity boundary r=a 

are presented in this section. These stresses are given 

for the cases n=1, 2 for each of the three step- traction 

loading indicated below: 

Index                         Applied load 

K = 1    

  0σσ

(Z)Unθcosσσ

ar rθar rz

n1ar rr






  

K = 2    

  0σσ

(Z)Unθcosσσ

ar rθar rr

n2ar rz






  

K = 3      

  0σσ

(Z)Unθsinσσ

ar rzar rr

n3ar rθ






  

The curves are shown for two sets of prameters: 

Case 1:    0.25υ;2
C

V
M

1
1   

  Case 2:   0.25υ;1.033
C

V
M

1
1   

       The values of M1 
were chosen for application of 

the results to problems of some practical interest. The 

stress components in each case approach the static 

plain strain solution as Z approaches infinity, 

indicating that mathematical model produces correct 

results for propagation of waves in the isotropic 

medium. For those cases in which the static solutions 

do not vanish, a typical overshoot above the value of 

the static (long term) solutions is observed. 

Moreover, a decrease in the Mach number M1 

appears to compress the stress response curve into a 

smaller range of Z such that the asymptotic values of 

the lower value M1=1,033 are obtained for smaller 

values of Z. Figures 12 and 13 show the stress 

components 
zz0,

σandσ
θθ0,

 at the cavity boundary 

r=a for the axisymmetric loading case, n=0, for the 

mach numbers M1=1.033, 1.5 and 2. As in the cases 

where n  0, the stress components in each case 

approach the static plain solutions as Z approaches 

infinity. Figures 14 through 19 show the 

displacement components Zn,θn,rn, uandu,u  (n=1, 

2, 3, 4) for each of the three loading cases, k=1, 2, 3. 

Figures 20 through 22 show the
 r0,u and Z0,u

displacement components for the case n=0. These 

displacement results are shown for the   M1= 2, 

4/1  case only. 

       The only property of the material in the medium 

which enters into computations is its poisson's ratio. 

Figures 23 through 26 represent the effect of this 

parameter on the values of stress components for the 

axisymmetric loading case, n=0. The following 

values of poisson's ratio are used in this study: 

0.35 and0.25,15.0,0υ   

       It is noticed that the change in poisson's ratio 

does not have a large effect on the maximum value of 

longitudinal stress for the load case k=2 (Figure 26), 

while it affects considerably the value of longitudinal 

stress for the case load, k=1 (Figure 25) , and hoop 

stress for the two cases, k=1,2 (Figures 23 and 24) for 

smaller values of Z. 
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Figure 3. Stress σ  at boundary due to step load ;                                                

2,1);(cosn1σrrσ  nZun  

 
Figure 4. Stress σ  at boundary due to step load : 

2,1);(cosn2σrzσ  nZun  

 
Figure 5. Stress σ  at boundary due to step load ;                                                

2,1);(sinn3σrσ  nZun  

 
Figure 6. Stress zzσ  at boundary due to step load ;                                                    

2,1);(cosn1σrrσ  nZun
 

 
Figure 7. Stress zzσ  at boundary due to step load ;     

2,1);(cosn2σrzσ  nZun  

 

 
Figure 8. Stress zzσ  at boundary due to step load ;                                                    

2,1);(sinn3σrσ  nZun  
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Figure 9. Stress zσ  at boundary due to step load ; 

2,1);(cosn1σrrσ  nZun  

 

Figure 10. Stress zσ  at boundary due to step 

load ; 2,1);(cosσσ n2rz  nZun  

 

Figure 11. Stress zσ at boundary due to step load ;              

2,1);(sinn3σrσ  nZun  

 

Figure 12. Stresses at boundary due to 

axisymmetric step load                                                     

0n);Z(u  n1σrrσ  

 
Figure 13. Stresses at boundary due to 

axisymmetric step load                                                     

0);(n2σrσ  nZuz  

 

Figure 14. Boundary displacement rnu ,  due to step 
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Figure 15.  Boundary displacements due to step load   

;n=1,2,3,4 25.0,2
1

M,                                        

 
Figure 16. Boundary displacements due to step load   

;n=1,2,3,4 25.0,2
1

M,                   

                      
Figure 17.  Boundary displacements due to step 

load   ;n=1,2,3,4 25.0,2
1

,  M                                       

 

Figure 18. Boundary displacements due to step 

load   ;n=1,2,3,4 25.0,2
1

M,                                        

 

 
Figure 19.  Boundary displacements due to step 

load   ;n=1,2,3,4 25.0,2
1

M,    

    

Figure 20. Boundary displacement  
r0,

u due  to step 

load  01σ  ; n=0 25.0,2
1

M,            
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Figure 21. Boundary displacement  
r0,

u due to step 

load  02σ  ; n= 0   
z0,

u due to step load  01σ  ; n= 0

25.0,2
1

M,   

 

 

Figure 22. Boundary displacement  
z0,

u due to step 

load  02σ  ; n= 0                                      

 
Figure 23. Comparision of  Hoop stress for different values of 

poisson's ratio at boundary r=a due to axisymmetric step load  

01σ  ; n= 0,M1=2 

 
Figure 24. Comparision of  Hoop stress for different values of 

poisson's ratio at boundary r=a due to axisymmetric step load  

02σ  ; n= 0,M1=2       

                              
Figure 25. Comparision of  Longitudinal stress for different 

values of poisson's ratio at boundary r=a due to axisymmetric 

step load 01σ  ;     n= 0, M1=2 

 
Figure 26. Comparision of  Longitudinal stress for different 

values of poisson's ratio at boundary r=a due to axisymmetric 

step load 02σ  ;   n= 0, M1=2                     
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Appendix A 

Verification of the Solution of Wave Equation 

       Consider the modified wave equations express-

ed in equations (20). A typical differential equation 

of this kind is expressed as: 

ZZφφ2 2M  

Or                                      

0
R

n

R

1
β

2

2

RRRZZ
2  φφφφ  

(A.1) 

A solution of this differential equation was 

represented in the following form. 

du nu cosh u) cosh R-Z
1u

0

βf(φ   
(A.2) 

Where  

)
Rβ

Z
(11cosh

1
u 

 

 In this section, the solution (A.2) is checked by 

substitution of φ into equation (A.1). 

Partial derivatives of φ  are:  

  
1u

0
R dunucoshucoshηfβφ  

  
1u

0

22
RR dunucoshucoshηfβφ  

  
1u

0

dunucoshηfZZφ  

(A.3) 

Where  

ucoshRβ-Zη 
 

The function φ  may be integrated by parts as 

follows: 

   

  



1
u

0

1
u1

u

0

dunuuηf
n

β

nuηf
n

dunucoshηf

sinhsinh
R

sinh
1

φ
0  (A.4) 

The first term on the right hand side is zero, since 

 ηf  is zero for values of u greater than 1u . In a 

similar manner Rφ  can be integrated by parts, 

  
1u

0
R duucoshnucoshηfβφ  

 

  

 

1

1

u

0

u

0

2

dunuuηfβn

dunucoshuηfβ

sinhsinh

sinhRφ 2
R

 

It is easily seen that substitution of the values φ ,

Rφ , RRφ and ZZφ  into equation (A.1) satisfies this 

equation.  

 

 

Similar solutions are obtained for the functions ψ  

and χ . 
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