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Abstract: Using the second law of thermodynamics, we examine the macroscopic equations for mass, momentum, 
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1  Introduction 

The description of physical processes which 
occur in multi-phase systems has been a topic of 
practical as well as theoretical interest for many years 
in subsurface hydrology, waste containment, 
enhanced recovery of petroleum, aquifer remediation, 
agriculture and seismic phenomena in geological 
formation. Porous materials consisting of a swelling 
solid matrix with fluid-filled pores are ubiquitous. 
Some examples are food stuffs, drugs, cartilage, plant 
seeds, carbohydrates, proteins, clay soils and 
biotissue (see Singh (2002), Singh et al. (2003), 
(2004) and Weinstein (2006)). Swelling clays, 
especially Montmorillonites, play a prominent role in 
several natural and industrial domains, such as soil 
science, hydrogeology and catalysis, engineering 
barrier systems for nuclear waste repository and 
municipal waste disposals sites.  

During the past few decades, significant 
progress has been made in developing general 
theories describing thermodynamic processes in 
general multi-phase systems and in porous media (see 
Bennethum and Cushman (1996b), Gray and 
Hassanizadeh (1998) and Gray (2002)). Examples of 
these, are the swelling (see Almeida and Spilker 
(1998), Bennethum and Cushman (1996a)) and 
non-swelling systems (see Hassanizadeh and Gray 
(1980), (1990), Hassanizadeh (1987 a, b)).  

The framework which we use is the hybrid 
mixture theory (HMT). This HMT consists of 
averaging the microscopic field equations 
(conservation of mass, conservation of momentum, 
conservation of energy and balance of entropy) for 
each phase in order to obtain macroscopic field 
equation. At this point the medium is viewed as 

mixture of phases, that is, each phase has defined 
properties (densities, stress, etc.) at every point in 
space and time. The HMT approach was pioneered 
by Hassanizadeh and Gray in a series of papers 
(1979a, b), (1980), (1990) and (1993). From 1979 to 
the present, HMT has been successfully used to 
model swelling and shrinking behaviour of gels, food 
stuffs, and collodial systems where phase interactions 
play an important role in the mesoscopic and 
macroscopic behaviour (see Bennethum and 
Cushman (1996) and Bennethum (2007)). In Singh 
(2002), Singh et al. (2003), Singh et al. (2004a, b), 
Weinstein (2006) and Weinstein and Bennethum 
(2006) models were developed in which the solid 
itself was assumed to be viscoelastic but the interface 
was assumed as not having thermodynamic 
properties. 

The purpose of this research is to develop a 
constitutive theory, for the total Cauchy stress tensor 
and the total heat flux in a system under the 
following assumptions:   
  • the system is biphasic, has mass exchange and 
different temperature.  
  • the solid matrix is viscoelastic and the fluid is 
viscous.  
  • the interface has full thermodynamic properties 

 
2  Macroscale equations 
Conservation of mass 

We consider a viscoelastic solid matrix s , a 

viscous fluid f , an interface sf  which has 

thermodynamic properties and a system which has 
mass exchange . The macroscopic balanced equations 
on which this project is based result from an 
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averaging process of the mesoscale equations of 
mass, momentum, energy and entropy, on a 
representative elementary volume, for each phase and 
the interface. Details of this averaging process are not 
included here, but can be obtained from several 
works of Gray and Hassanizadeh (1989), 
Hassanizadeh and Gray (1979) and other authors. 
From Gray and Hassanizadeh (1998), we recall the 
following macroscale balance equations for both the 
bulk phases and the interfaces. 
The bulk phase equations  
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 where   is the volume fraction of the  -phase, 

  is the intrinsic mass density, v  is the 

velocity of the  -phase and 

sfê  is the exchange of 

mass from the only sf -interface to the  -phase. 

Furthermore, we observe that the two volume 

fractions satisfy the identity 1=fs   . 

The interface equation  
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 where sf  is the specific interfacial area of the 

sf -interface, 
sf  is the mass per unit area of the 

sf -interface and sfv  is the velocity of the 

sf -interface. 

 
Conservation of linear momentum 
The bulk phase equations  
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Here 
t  is the  -phase Cauchy stress tensor, 

g  is the  -phase external supply of momentum 

and 


sfT  is the exchange of momentum from the 

interface to the  -phase. 
 
The interface equation  
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where sft  is the interface stress tensor, 
sfg  is the 

interface external supply of momentum, the product 
sf

sf ve ,ˆ 
 is the exchange of momentum between the 

 -phase and the interface due to the exchange of 

mass and 
sfsf vvv  =,

 is velocity of the 
 -phase relative to that of the interface. 
 
Angular Momentum 
     Due to the nonpolarity assumption which we 
adopt in this study, we have the following symmetric 
stress tensors. 
 
For the bulk phase, we have  

 
Ttt )(= 

            (5) 

 and for the interface, we have  

 .)(= Ttt 

          (6) 

where the superscript T , refers to the transpose. 
 
Conservation of energy  
The bulk phase equations  
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where 
E  is the  -phase macroscopic internal 

energy density function, 
q  is the  -phase heat 

flux, h  is the  -phase external supply of energy 

and 

sfQ̂  is the exchange of internal energy between 

the  -phase and the interface due to mechanical 
interactions. 
The interface equation  
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where the product ))(
2

1
(ˆ 2,, sfsf

sf vEe    is the 

exchange of energy between the  -phase and the 

interface due to exchange of mass, 
sfq  is the 

interface heat flux and 
sfh  is the interface external 

supply of energy. Note that 
sfsf EEE  =,

 is 
the internal energy of  -phase relative to that of the 
interface. 
 
Balance of entropy 
The bulk phase equations  
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 where 
  is the  -phase internal entropy 

density function, 
  is the  -phase entropy flux, 


sf̂  is the exchange of entropy between the 

 -phase and the interface due to the mechanical 

interactions and 
  is the  -phase net production 

of entropy. 
The interface equation  
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 where 
sf  is the interface internal entropy density 

function, 
sf  is the interface entropy flux, the 

product 
sfs

fse ,ˆ   is the exchange of entropy 

between the  -phase and the interface due to 

exchange of mass, 
sfssfs  =,

 is the entropy 

of the solid phase relative to that of the interface and 
sf  is the interface net production of entropy. 

 
3  Kinematics and the second    law of 
thermodynamics 

Let ),,(= 321 XXXX  be the Lagrangian 

coordinates of a typical particle at time 0=t  and 
let this particle be carried to a point with Eulerian 

coordinates ),,(= 321 xxxxs
 at time t . This 

motion is defined by the function  

1,2,3.=1,2,3=),,(= KandktXFx K
s

kk

 

We assume that ),(= tXxxs
 possesses 

continuous partial derivative with respect to their 

arguments to whatever order needed. Let 
sF  

denote the deformation gradient; i.e  

)(== ss

K
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x
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where GRAD  is the gradient with respect to 
Lagrangian coordinates. The Jacobian is given by  

).(det= ss FJ  

Since the motion is invertible, then the Jacobian 

0sJ . We also have the following expression for 
the Jacobian, Hassanizadeh and Gray (1980) and 
Gray (1983)  
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 The factor 0)( s
s  in equation (11), is 

independent of time and space. Using this equation 
and the continuity equation (1) for the solid phase, 
we obtain (see Gray (1983))  
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 where fsvvd T ,=))((
2

1
=    

is the  -phase rate of deformation tensor. From 
Eringen (1980) and Holtzapfel (2000), we have this 
identity relating the material derivative of the 
Jacobian and the deformation tensor  
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 By using the chain rule, we have the following 
material time derivative of the Jacobian  
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 The transpose of (14) is 
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 Since the Lagrangian strain tensor is defined by  
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 Furthermore, equations (14), (15) and (16) yield this 
time derivative of the strain tensor  
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 or the rate of deformation tensor is (see Weinstein 
(2006))  
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 We define the right Cauchy-Green tensor as  

      
sTss FFC )(=  

and hence the strain tensor is  
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Following Holzapfel (2000), we now consider a 
multiplicative decomposition of the deformation 

tensor 
sF  and 

sC  as follows:  
sss FJF 1/3)(=  

and  

,)(= 2/3 sss CJC  

where IJ s 1/3)(  and IJ s 2/3)(  represent the 

volumetric deformation, and 
sF  and sC  are the 

modified deformation gradient and the modified right 
Cauchy-Green tensor respectively. These two 
modified tensors account for distortional deformation 

and are related by  

.)(= sTss FFC   

The equation (17) is now expressed in terms of the 
modified deformation gradient, the modified 
Cauchy-Green tensor and the Jacobian as follows:  
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 The inner product of sd  with I , yields  
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Weinstein (2006), has a similar identity without the 
last term. 

 
Second law of thermodynamics 
    The conservation laws are supplemented with 
the second law of thermodynamics which states that, 
the rate of net production of entropy of a system must 
be non-negative. Using the macroscopic equations of 
the phases and the interface, we then develop the 
entropy inequalities to express this law. We start with 
the old entropy inequality which is expressed as 
follows:  
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 where 
A  and 

sfA  are the Helmholtz free 

energies of the  -phase and the sf -interface 

respectively and are defined as follows: 

fsEA ,==     

.= sfsfsfsf EA   

 
 

4  Choice of variables 
   Since we have more variables than the number of 
equations and our system has particular assumptions, 
we need to choose independent and dependent 
variables. The independent variables will have to 
capture our assumptions. 
 
Independent variables 

We assume the following indenedent variables: f , 

f , f , f

m)(

 , f

m)(

 , s , f , sf , sf , 

f , ,sf  
fd , 

sfd , 
sfv ,

, ,,ssfv  
sJ , 

sC , 

sC , 

)(n
sC , for pm 1,...,=  and qn 1,...,= . 

where f  is the porosity which accounts for local 

volume changes; f , the porosity gradient 

accounts for buoyancy effects; sf  is the amount of 

sf -interface per unit volume; f

m)(

  is the m -th 

order material derivatives of f  in the direction of 

the solid phase velocity. These derivatives from 

orders 1  to p , i.e. )1,...,=( pm , capture the 

viscoelasticity of the solid (see Weinstein (2006)). 

The higher order gradients of porosity f

m)(

 , 

account for flow due to moisture content. sf  is the 

areal density or specific surface of the sf -interface. 

The temperature gradients, 
fs   ,  and sf  

account for the conduction of thermal energy at 
intermediate rates of heat transfer. The inclusion of 

fluid density gives rise to pressure, 
fp ; 

sf  is the 

surface excess mass density of sf -interface. The 

rate of deformation tensor fd , incorporates the 
viscous nature of the fluid. The relative velocities are 

sfv ,
, the velocity of the fluid phase relative to that of 

solid phase and 
ssfv , , velocity of the interface 

relative to that of solid. The Jacobian sJ , captures 
the volumetric changes of the solid phase. The 

modified right Cauchy-Green tensor, sC , 
incorporates changes due to shear and the n-th time 
rates of change of the modified Cauchy-Green tensor 

)(n
sC , qn 1,...,=  accounts for the viscoelastic 

nature of the material (2006). 
 
Dependent variables 

The following variables 
sA , 

fA , 
sfA , 

st , 
ft , 

sft , 
sq , 

fq , 
sfq , 

s , ,f  ,sf  ,ˆs
sfe  

f
sfê , 

s
sfT , 

f
sfT  

s
sfQ̂ , 

f
sfQ̂ , are not directly measurable 

but are determined as functions of directly 

measurable (independent) variables, where ,sA  

,fA  
sfA  are the Helmholtz free energies, ,st  

,ft  
sft  are the Cauchy stress tensors, ,sq  

,fq  
sfq  are heat vectors, ,, fs   

sf  are 

entropy densities, 
f

sf
s
sf ee ˆ,ˆ  are the mass exchange 

terms, ,s
sfT  

f
sfT  are the momentum exchange 

terms, ,ˆ s
sfQ  

f
sfQ̂  are the internal energy exchange 

terms. 
 
 

Postulate  
As a departure from the principle of equipresence, we 

hypothesize that the Helmholtz free energies 
sA , 

fA  and 
sfA  of the solid phase, fluid phase and 

interface respectively, have the following 
independent variables (see Weinstein (2006)):  
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Extended entropy inequality 
    Liu (1972) proposed the extension of the 
entropy inequality by adding the products of 
Lagrange multipliers with conservation equations. In 
the present work we only use the conservation of 
mass equation as demonstrated in Bennethum and 
Cushman (1996), Singh (2002), Cushman and 
Bennethum (2004) and Weinstein (2006), 
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     The full expansion of the extended entropy 
inequality is presented in the appendix. We then use 
Coleman and Noll (1963) method to exploit this 
inequality, which leads to non-equilibrium results. 

 
5  Stress tensor and heat flux    results 
 
Non-equilibrium results 
    Considering the extended entropy inequality 
from the appendix, the coefficients of the following 
variables, which are neither independent nor 
dependent 

,,,, sfsffs dJ    

must be zero. This results in the following 
non-equilibrium results: 

s
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==)(

3

1


     (25)
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 ==





        (26)

 

Ipt sfsfsfsf  == 
        (27) 

     Equation (25) tells us that physical pressure is 
equal to thermodynamic pressure. Equation (27) tells 
us that the interface Cauchy stress tensor is given by 
interfacial surface tension. 
 
Equilibrium results  
     By letting all the coefficients variables that are 
neither independent nor dependent be zero, we obtain 
the dissipative or residual entropy inequality. Results 
from this dissipative entropy inequality at 
equilibrium are: the fluid stress tensor is  

.=)(= 2 IpI
A

t f

f
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


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   (28)

 

 the solid stress tensor is  
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 where  
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








 Ts

s
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ssfsi F

C

A
Ft )(2=   

 .:
3

1








 s

s

sf

C
C

A
 

 The term set  is the effective stress and also 
referred to as Terzhagi's stress in Weinstein (2006). 

Hydration stress is given by sht . The last term of 
equation (29) is new and brought about by the 
inclusion of the thermodynamic properties of the 

interface. We notice that sit  is directly proportional 
to the areal density function of the interface and also 
depends on the change in interface free energy with 
respect to shear. Furthermore,  

si

s

sfsh

s

fse ttt







  

forms the deviatoric part of the solid phase stress 
tensor.  
There is no heat flux at equilibrium and thus we have  

 .,=0== fsqq sf 
 

 
Constitutive forms 

If at equilibrium, we have a result BA e =| , then 

away from equilibrium we will have CBA = , 

where 0=|eC . Note that C  will depend on all 

the chosen independent variables. We will refer to 

CBA =  as a constitutive form. From equation 
(28), away from equilibrium the fluid stress tensor 
becomes  

 ,= fff Ipt        (30) 

 the solid stress tensor becomes  
 

,= ssi

s

sfsh

s

fsess tttIpt 









   (31)

  

 the heat fluxes for the phases become  

fsqq ,=,= 

          (32)
 

 and for the interface, we have  

 .= sfsf qq            (33) 

 The additional non-equilibrium terms in the 
constitutive forms (30) and (31) are highly 
non-linear. 

 
6  Near equilibrium 

 
We use Taylor's theorem to linearize non-equilibrium 
terms of constitutive forms about the equilibrium. 

The linearization is done with respect to heat 
conduction, fluid viscosity and viscoelasticity of the 
solid. For the fluid phase stress tensor the 
non-equilibrium term becomes 

 
ffff dDH :=          (34) 

 
For the solid phase stress tensor the non-equilibrium 
term becomes  

)(

1=

=
r

f
sr

p

r

ss EH    

 
1

)(

1=

)(:  s

n
ssns

q

n

FCKF
  (35)

 

 The heat fluxes for the fluid and the solid are given 
respectively by  

.::= ffff dNMq  
    (36) 
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f
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l

fsss SdNMq    

.)( 1

)(

1=

 s

n
ssns

q

n

FCWF
      (37)

 

We note that the material coefficients in these 

expressions, viz. slS  is a first order tensor, 
M  

is a second order tensor, N  and snW  are third 
order tensors.  

 
 

.:= fsfsfsf dNMq  
    (38) 

 In this expression, the material coefficient 
sfM  is 

a second order tensor and 
sfN  is a third order 

tensor.  
In order to determine the exact nature of all these 
material coefficients, we need to perform 
experiments. 
 
Remark: All the heat fluxes generalize Fourier's law 
of heat conduction. 
 
Constitutive form near equilibrium 
The expression of the fluid phase stress tensor near 
equilibrium is  

 

.:= ffff dDHpIt  
      (39) 

 The expression of the solid phase stress tensor near 
equilibrium is  
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 The expressions of the fluid and solid phase heat 
fluxes near equilibrium are  

ffff dNMq ::=  
   (41) 

 and  
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 respectively. 
Total stress and heat fluxes 
First we have the total pressure given by  

.)(1= f
f

s
f ppp    

We then have the total stress tensor as  
f

f
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 The total heat flux is  
f

f
s

f qqq   )(1=  

or  
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Conclusion 
    Using macroscopic balance equation (averaged 
from mesoscale to macroscale), the hybrid mixture 
theory method, Coleman and Noll method and Liu's 
Lagrange multiplier's, we obtained the interfacial 
tension as the only result which is valid everywhere. 
All other results were determined near equilibrium by 
applying linear Taylor expansion about equilibrium. 
These all have the following dependencies   

• From equation (27) the interfacial tension 
sft , 

depends on the interface thermodynamic pressure 
only.  
• From equation (43) the total particle stress tensor 
t , depends on the porosity, the total thermodynamic 
pressure, hydration forces, effective stresses due to 
the solid phase and the interphase, heat conduction, 
fluid viscosity and the solid matrix viscoelasticity.  
• From equation (44) the total particle heat flux q  

depends on the porosity, fluid viscosity, heat 
conductio and the solid matrix viscoelasticity.  
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Appendix 
    After appropriate substitutions of the old 
entropy inequality, the Lagrange multipliers, the 
conservation of mass equations and simplification, 
we obtain the following expression of the extended 
entropy inequality (24):  
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Nomenclature 

 

 
A   

Helmholtz free energy function for the 

 -phase. 

sfA   
 Helmholtz free energy function for the 

sf -interface. 

b   
 external supply of entropy to  the 

 -phase.  

b   
 external supply of entropy to  the 

 -interface.  

sC   
 Right Cauchy-Green tensor. 

sC   
 Modified right Cauchy-Green  tensor. 

d   
 strain rate tensor for the  -phase.  

sE   
 Lagrangian strain tensor.  

E   
internal energy of the  -phase per mass of 

  phase.  

E   
 internal energy of the  

  -interface per mass of  

 -interface.  


ê   rate of transfer of mass from   - 

interface to the   phase. 

sF   
 deformation gradient of the solid  phase. 

sF   
 modified deformation gradient of  the 
solid phase. 

G   
 Gibbs free energy function.  

g  
 external supply of momentum to the 

 -phase. 

g  
external supply of momentum to  the 

 -interface.  

h  
 external supply of energy to the  

 -phase . 

h  
 external supply of energy to the  

 -interface. 

sJ   
 Jacobian of the solid phase. 

 

Q̂  

 energy transferred to the 

  -phase from the   interface. 

q  
 heat conduction vector for the   -phase. 

q  
 heat conduction vector for the  

 -interface. 


T̂  

force exerted on the   phase by the 

 -interface.  

t  
 stress tensor for the   phase.  

t   stress tensor for the  -interface. 

v  
 velocity of the  -phase. 

v   velocity of the  -interface. 

 ,v  
 velocity of the  -phase relative  to the 

velocity of the  -interface, 

 
 vv  . 

x   position vector of a solid phase particle in 
the deformed configuration.  

X    position vector of a solid phase particle in 
the undeformed configuration. 

  
 entropy of the  -phase.  

  entropy of the   interface.  

   
 volume fraction of the  -phase.  

  
 specific interfacial area of 

  -interface (area per unit of system 

volume).  

  
 density of  -phase, mass of   -phase 

per volume of  -phase.  

   density of  -interface, mass of 

   -interface per area of   
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interface.  

  
 entropy conduction vector of the  

 -phase.  

  
 entropy conduction vector of the 

   -interface.  

   
 volumetric mass density of the  -phase.  

   
 volumetric mass density of the  interface.  

 

sf   

 body supply of of entropy to  the 

 -phase from the sf -interface.  

   
 rate of net production of 

 entropy to the  -phase.  

sf   
 rate of net production of entropy to the 
interface.  

M   
 The  -phase continuity equation. 

P   
 The  -phase momentum equation. 

E   
 The  -phase energy equation. 

sfM   
 The interface continuity equation. 

sfP   
 The interface momentum equation. 

sfE   
 The interface energy equation. 

)(m

f   
 

thm  order material derivative of  the 

f  with respect to the macroscale 

)(n
sC   

 
thn  order material derivative of the 

sC  

with respect to the macroscale 

 
  

Differential operators used 
  

 DtD /
  

 material derivative following the motion 

in the  -phase,  vt/ . 

DtD /
  

 material derivative following the  

motion in the  -interface, 

 vt/ .  

   
 gradient operator with respect to spatial 
coordinates.  

 
Superscripts and subscripts 

  
 s    solid phase.  

f    fluid phase.  

sf    solid-fluid interface.  

T    transpose of a tensor.  

 

  
 
 
11/11/2011 


