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Abstract: In this paper, Analytical stresses are obtained for the sphere rests on a rigid plane horizontal surface. It is 
assumed that the support reaction consists of a concentrated vertical force equal to the weight of the sphere. We are 
started with the solution for a point force acting on the surface of a half-space and determine the tractions on an 
imaginary spherical surface passing through the point of application of the force, then complete the solution by 
superposing appropriate spherical harmonics. The results differ significantly from the classical elasticity solutions 
that are based on the assumption that the body is fully formed before the loading is applied. The self-equilibrated 
tractions due to self-weight and the concentrated force alone and with the approximations obtained using 2n   
and 4n  . The process is clearly convergent and as with Fourier series approximations, the error exhibits more zero 
crossings as the number of terms increases.  
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1. Introduction 

The majority of contacts fall into one of two 
classes; those where at least one of the contacting 
bodies is convex, so that the contact size depends on 
the normal load – an incomplete contact, and those 
where the contact-defining body has a surface profile 
with distinct discontinuities in surface slope which 
define the contact size – a complete contact. Partial 
slip contact problems are of great practical interest 
because the damage caused by slip within notionally 
stationary contacts encourages the nucleation of 
fatigue cracks. Most solutions to partial slip problems 
within the literature are based on half-plane theory, 
and employ the usual Amontons–Coulomb frictional 
law, which remains the most appropriate model for 
most metallic contacts, and is also used here. The 
pioneering solution describes the response of a 
Hertzian contact subject to a constant normal force 
and oscillatory shear (Cattaneo, 1938). Mindlin 
revisited the problem ten years later, and extended 
the solution to consider more complex sequences of 
loading (Mindlin, 1949; Mindlin & Dereciewicz, 
1953). The most important development in this 
family of solutions since then has been the 
simultaneous discovery by Jager (1998) and by 
Ciavarella (1998) that the ‘corrective’ shear traction 
distribution within the stick zone is similar in form to 
the contact pressure sustained by the contact under a 
lighter load-this is true for any half-plane contact. As 
half-plane theory can model only incomplete contacts 
the contact pressure always falls smoothly to zero at 
the contact edge, so that there is always a region of 
slip present under a monotonically increasing load, 

and which starts at the edge. Recently, the authors 
examined the case of two similar elastic cylinders 
pressed end-on-end and twisted, and investigated the 
development of slip. That problem incorporates an 
unusual type of contact-where the size is 
simultaneously defined by both bodies-and where the 
shearing traction is anti-plane with respect to a 
diametral plane (Kartal, Hills, Nowell, & Barber, 
2010). 
 
2. Preliminaries 
2.1. The Boussinesq solution 

We shall now apply similar arguments to 
solve the Boussinesq problem, in which a point force 

F in the z direction  is applied at the origin 0R   
on the surface 0z   of the half-space 0.z    

We note that the force is normal to the 
surface, so that there is no tangential traction at any 
point on the surface — i.e. 

0 ; , , 0zx zy all x y z               (1) 

We therefore seek a suitable partial integral 

of 1/R to be dimensionless in R  and singular at the 
origin, but otherwise to be continuous and harmonic 
in 0.z   

It is easily verified that the function 
0
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           (2) 

The force applied at the origin is 
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and hence the stress field due to a force F  in the 

z direction  applied at the origin is obtained from 
the potential 

ln( )
2

F
R z


                (4) 

 
2.2 Other singular solutions 

We have already shown how the singular 

solution in ( )R z  can be obtained from 1/R  by 

partial integration, which of course is a form of 
superposition. A whole sequence of axially 
symmetric solutions can be obtained in the same way. 
Defining 

0
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                 (5) 

We obtain 
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By the operation 
0

1( , ) ( , ( )) .n nr z r z d   



              (7) 

The inverse operation is one of 
differentiation, so that 

1 .n
n

z


 




              (8) 

We can therefore also extend the sequence 
to functions with stronger singularities such as 

2 3

1 2 33 5 3 7 5

3 1 15 9
; ; .

z z z z

R R R R R
                  (9) 

If the half-space is indented by a frictionless 
punch, so that the surface 0z   is subjected to 
normal tractions only, a simple formulation can be 
obtained by combining solution and defining a 
relationship between   and   in order to satisfy 

identically the condition 0zx zy    on 0.z   

We write 
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z
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Obtaining 
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Therefore 
2 2

2 2
cos 2(1 ) cosRR R

RR R

  
   

  
   

 
     (12) 

2

2 2 2 2

2 2

2

1 cot 1

sin

2
(1 2 ) cos sin

cos cot

sin sin

R R R R

R R

R R



   


  

  
  



   

   

  
  

  

 
  

 

 
 

 

        (13) 

2

2 2

2

2

1 1
(1 2 ) cos

2(1 ) cos
sin

R R R R

R R



  
  



   


 

  
   

  

  
 

 

        (14) 

2

2

2

1 1
(1 2 ) sin

2(1 )
s cos

R
R R RR

co
R R



  
  

 

  
 

 

  
   

   

  
 

  

        (15) 

0R               (16) 

 
3. Stress field due to rests on a rigid plane 
3.1. Governing equations 

The general solution for a solid sphere with 
prescribed surface tractions can be obtained using the 
spherical harmonics. The addition of the singular 
harmonics permits a general solution to the 
axisymmetric problem of the hollow sphere, but the 
corresponding non-axisymmetric. Using equations 
(4)-(10), we obtain 
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These can be written in spherical polar 
coordinates centred on the point of application of the 
force as  

0
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and the corresponding non-zero stress components 
are obtained by substitution into equations (12)-(16) 
as 

2
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Points on the surface of the sphere are 
defined by the equation 

2 cosR              (26) 

 

 
 
Figure 1. Configuration, loading and geometry. 
 
As shown in figure 1. At this point we have 
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However, to find the implied tractions on the 
spherical surface, we need to rotate the local 
coordinate system clockwise through an angle  , 

obtaining the radial and tangential tractions  
2 2cos sin

2( )( sin ) cos

R RR

R

t 



   

  

 

  
          (32) 

2 2

( )( sin ) cos

( )(cos sin )

RR

R

t 



   

  

  

  
              (33) 

In these equations, notice that the sign 

convention for a Cartesian coordinate system ( , )x y  

aligned with ( , )R   at the surface would involve a 

negative shear stress ( )xy R    and the 

clockwise rotation introduces a negative sign into the 

terms involving sin . The direction of the shear 

traction t  is chosen so as to be consistent with the 

angle   subtended at the centre of the sphere, 
defined such that 0   corresponds to the point of 
application of the force. From figure 1, we then have 
2                (34) 

Substituting from (27)-(31) into (32), (33) 
and simplifying, we obtain 
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Or in terms of , 
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These expression are not of Fourier form in 
the angle   and hence the process of adding terms to 
satisfy the traction boundary conditions on the sphere 
will be more complex than in the two-dimension case. 

More seriously, the traction t  is singular as 0   

— i.e. at the point of application of the force. This 
result was first remarked by Sternberg and Rosenthal. 
It might still be possible to satisfy the boundary 
condition using an infinite series of spherical 
harmonics, but the series would probably be only 
very slowly convergent because of the singularity. 

To prevent this problem and improve the 
convergence of the series, we need to superpose 
additional potentials chosen so as to cancel this 
singularity. As a preliminary to this process, we can 
expand (38) near 0   by writing  

2 2
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2

1
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2 8
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Obtaining 
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F F
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As 0  . 
To choose a suitable potential to cancel the 

first term, notice that the surface is very nearly plane 
when 0  , so we can look for potentials giving 
shear tractions on the surface of the half plane with 
this singular form. This may seem curious, since the 
original Boussinesq solution gave identically zero 
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tractions on this plane, but we note that the singular 
tractions are one order lower than the singularity 

associated with the point force, which is order 2R  . 
We therefore choose additional potentials from 
equation (6) that are one order less singular than 
those in (19), (20). Notice that these will introduce 

singular tractions both Rt and t , the former is 

undesirable, so we use the same combination make 
the dominant singular term in Rt  be zero. 

We therefore choose  

1 2(1 ) [cos ln( cos ) 1]CR R R                   (41) 

1 ln( cos )C R R                                            (42) 

We find the tractions due to this potential as 
0   to be 
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Superposing this on the original stress 
function, it is clear that we can cancel the unwanted 
singularity by choosing  
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    With this choice, the tractions everywhere 
on the surface of the sphere are bounded, but we 

notice from equation (44) that the traction t will be 

non-zero at 0  . Now it is easily verified that all 
the axisymmetric spherical harmonics give zero 
values of shear traction R   on the axis 0  . In 

other words, although the magnitude of the traction is 
continuous, it's direction changes discontinuously at 
the origin. This is itself a kind of singularity.  

This additional singularity can also be 
removed by superposing the next higher order 
potentials, once again chosen form (6) so as to satisfy 
– i.e. 
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We find the traction due to the superposition 
of all the above potentials at 0   to be 
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And hence we can eliminate the cowlick by 
choosing 
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Thus, a suitably smooth form of the point 
force solution for the sphere is provided by the 
potentials 
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To confirm that the tractions now remaining 
to be removed are smooth, we plot them in figure 2 
as functions of .   

 
 
Figure 2. Tractions on the spherical surface 
associated with the stress functions of equation  (52, 
53). The curve passing through the origin is the shear 

traction .t  

 
3.2. Gravitational 

The body force due to self-weight is 
conveniently introduced as a hydrostatic stress  

cos ,RR gR                    (54) 
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Where R  is here measured from the centre 
of the sphere. This adds an additional term 

cos .ga   Into the traction component Rt , whilst 

leaving t  unchanged. Also, we note that the force 

F  must support the weight of the sphere, so 
34

.
3

ga
F


             (55) 

 
3.3 Spherical harmonics 

To complete the solution, we superpose a 
series of spherical harmonics. Thus, we add the new 
potentials  
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evaluate the additional tractions on the 

surface .R a  since we can only use a finite 

number of terms in the series, we can satisfy the 
traction-free boundary condition might be chosen, but 
the must convergent is to use a Galerkin or 'weighted 
residual' method. For example, if we write the 
approximate tractions in the form 
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we can define an error measure  
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An optimal choice of the constants ,iA iB can then 

be made by requiring  
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for 1, .i n  Notice that the error measure has been 

weighted uniformly in 0 .    An alternative 
choice here would be to weight according to the 
volume of surface of the sphere, which would 
introduce a factor of sin  into the integral. This 
would probably give better accuracy near the equator 
(where there is more surface area) and less near the 
poles. 

The effect of this process is to weight the 
traction-free condition according to the practicable in 
mathematica. In Figure 3 we present the self-

equilibrated tractions Rt due to self weight and the 

concentrated force alone and with the approximations 
obtained using 2n   and 4n   respectively. The 
process is clearly convergent and as with Fourier 
series approximations, the error exhibits more zero 
crossings as the number of terms increases. 
Oscillations near 0  (Gibb's phenomenon) are to 

be expected with large numbers of terms, but this 
effect has been to some extent mitigated by the 
removal of the stronger discontinuous effects in the 
above analysis. 

 
Figure 3. Tractions in the approximate solution (a) 

Rt  and (b) ,t normalized by ga  for the case 

0.3 .   

 
4. Conclusion 

     To obtain the Stresses in the sphere rests 
on a rigid plane horizontal surface, equations are 
solved utilizing the Boussinesq solution method and 
determined the tractions on an imaginary spherical 
surface passing through the point of application of 
the force, then complete the solution by superposing 
appropriate spherical harmonics.   

     Alternative choice here would be to 
weight according to the volume of surface of the 
sphere, which would introduce a factor of sin  into 
the integral. This would probably give better 
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accuracy near the equator (where there is more 
surface area) and less near the poles. 

     The effect of this process is to weight the 
traction-free condition according to the practicable in 
mathematica. In Figure 3 we present the self-

equilibrated tractions Rt due to self-weight and the 

concentrated force alone and with the approximations 
obtained using 2n   and 4n  . The process is 
clearly convergent and as with Fourier series 
approximations, the error exhibits more zero 
crossings as the number of terms increases 
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