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Abstract: A two – dimensional steady – state, mathematical modeling has been presented for the pollutant 
released from an elevated source in an inversion layer. The study presents a treatment for computing the 
pollutant concentration distribution under a physically realistic boundary condition which considers the ground 
as an absorber-reflector surface for the pollutant simultaneously. The wind speed is parameterized in terms of 
vertical height using the power law profile. The partial differential equation describing the advection-diffusion 
of pollutants has been solved using separation of variables method. An upper boundary condition which 
assumes the presence of capping inversion is taken into consideration. The mathematical formulation for the 
pollutant concentration distribution obtained in the present treatment is given in terms of Bessel and Gamma 
functions.   
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Introduction 

Mathematical modeling is a tool for 
establishing various aspects in air pollution like; 
emission control legislation, impact assessment, 
and emergency preparedness etc. [1]. The 
analytical solution of the advection-diffusion 
equation bears significant importance since all 
influencing parameters are expressed in 
mathematically closed form [2].From this 
modeling; it is possible to investigate dispersion 
from continuous point source given appropriate 
boundary and initial conditions.            The model 
that is commonly used worldwide for regulatory 
purposes is the general Gaussian Plume Model 
(GPM).This model is based on various a 
assumptions:(1) the mean wind speed and eddy 
diffusivities do not have spatial variation (2)the 
ground surface is a perfect reflector for the 
pollutant (3)the diffusion in the vertical direction is 
unrestricted ,i.e., it is not capped by an inversion 
which tends to reflect back the pollutant hitting the 
inversion base[3]. In this respect, gradient transport 
theory is one of the analytical techniques that can 
overcome these short comings by inclusion of some 
of the above-mentioned physical processes, which 
will be more appropriate for treatment of 
atmospheric dispersion.                                             
The analytical solution for the standard conditions 
of the advection-diffusion equation is obtained only 
by making some particular assumptions about the 
eddy diffusivities (homogeneous turbulence) and 
considering stationary conditions [4-6].                    
In the present work, we will present an analytical 
solution for the advection-diffusion equation which 
describes pollutant dispersion from a continuous 
elevated point source. In this formulation, the 
steady state condition is taken into consideration 
under the following postulates: 

The down-wind speed profile is parameterized 
as a power-law depending on the vertical height (z) 
above ground level [2]. 

The pollutant dispersion remains confined to a 
layer capped by an inversion lid at the top, which 
serves as an impermeable upper boundary layer for 
the pollutant [7]. 

The inclusion of the ground surface as a 
reflector-absorber for the pollutants at the same 
time. This assumption is taken into consideration as 
an appropriate-realistic lower boundary condition. 

 
2. Mathematical Description of the Problem 
 Considering a Cartesian coordinates 
system in which the x-axis coincides with the 
direction of the average wind and z is the vertical 
axis, then the steady-state of a contaminant released 
from a point source is described by the following 
partial differential equation[8];                    

(1)                                                       

Where 
χ

 denotes the average concentration, kx, 
ky, kz and u, v, w are the Cartesian components of 
the eddy diffusivities and wind, respectively. The 
crosswind integration of Eq.1,in stationary 
conditions and neglecting the longitudinal 
diffusion) leads to: 

                  
                              

                                 (2) 
 

A power-law profile is used to describe the 
variation of wind speed u with height in the surface 
boundary layer, thus,u can be parameterized in 
terms of z as: 
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   , 0 <m ≤1  (3)                        

               
 
Where m is the power-law exponent which depends 
on thermal atmosphere stability (zr) is the speed at 
a reference height zr(usually zr=10m).Eq. 3, can be 
written as:      
                    (4) 

 
Where 
 
The eddy diffusion coefficient kz is assumed 
constant k in our derivation. Then Eq. 2, reduces to:                
                                                                                         

                      
           

(5)  
 
 
3. Method of Solution 

The second order partial differential eq. 5 will 
be solved using the method of separation of 
variables. The concentration distribution function 

 is separated as:   

                      (6)                              

                                                
  Differencing partially with respect to both 
x and z, and substituting in Eq. 6, we get:  

     
(7)  

  
                             

Dividing both sides on zm k X(x) Z (z) we 
get two ordinary differential equation in the two 
variables x and z as: 

                                     
          (8)                 
 

                           
 And                                                                          

                             (9) 
 

 
Where β2 is a constant. 
 
3.1. Boundary conditions 
(i) The modified approach adopted in this study is 
to assume that the ground is assumed to be partially 
reflector and partially absorber surface to the 
pollutant.                                                             
              Accordingly, diffusive flux at the ground 
surface does not vanish ,i.e.,               

                                                                                   

 
    

vd χ         at    z = z〪              (10) 

 

Where χ  is the pollutant concentration at a 

reference height z0, the roughness height, which is 
very close to the ground surface (z0=0.3 m – 1.0 
m)[9]. 
(ii) The pollutant is not able to penetrate through 
the top of the inversion / mixed layer located at 
height a ,i.e., the concentration vanishes at the 
height a;  

 
 

 
         At     z = a                     (11) 
 
3.2. Solution of the differential equations 
3.2.1. The horizontal equation in the variable x 
Eq. 8, can be integrated to get the solution: 
                                                                                                                          

 
                 (12) 

 
3.2.2. The vertical equation in the variable z 
Eq. 9, can be transformed to Bessel differential 
equation [10] as;  

                                                                           

13)                                                                                                                               
Where Jn(2βnz1/2n) is the Bessel function of order n 
and first kind, while Yn(2βnz1/2n)is the Bessel 
function of second kind. The order n is; 
  

A is a parameter which is determined from 
the boundary conditions such that it tends to zero 
for large values of z. c1 and c2 are constants. 

From the characteristics of Bessel 
differential equations solution, if n is a fraction, the 
solution can be expressed in terms of two Bessel 
functions of first kind and of orders n and –n. Thus, 
the solution of the differential equation given by 
Eq. 13, is reduced to:   

                                                                          (14) 
 
3.3. Determination of the constants 
From the boundary condition Eq. 10,which is valid 
very close to the ground surface, i.e. small values 
for the variable z, the Bessel function Jn(x)for small 
values of x is approximated as [11].                          

                                              
 (15)  
 

 
Where Gamma function Γ(n+1) has the formula : 

                                                 
                                       

                (16)  
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When substituting Eq. 15, on Eq. 14, we find 
that the constant c2 should vanish, since the 
function J-n(z) has imaginary argument .  By 
applying the boundary condition Eq. 10, we get  
 

 
 

 
Then the constant c1can found as:   

                                        
                                            
             (17) 

 
Thus, Eq. 14 can be written in the form: 
                                                                            

                
  (18) 

 
 
On substituting both Eq. 12, and Eq.18 in Eq. 6, we 
get the concentration distribution function as: 
                            

(19) 
 
4. Application of the Upper Boundary Condition 
Is the boundary condition given by Eq.11, for large 
values of z. In this case A will be zero, and the 
boundary condition then reads: 

                                                                                 
at  z=a    (20)   
  
Then, we get     

                     
                                       

                                                 
                                  (21) 

 
5. The Boundary Condition at the Point of 
Emission 

It is well known that the pollutant 
concentration   both in air and on ground 

level is directly proportional to the source strength 
Q and inversely with both the source height hs and 
the wind velocity at the emission point u (hs).These 
concepts can be expressed as:   

                                                
at    x=0 ,z=hs          (22) 
 

Applying this condition, Then the constant A may 
have the formula: 

                                                                                   
                                                                     (23) 
 

The resulting expression for the concentration 
 can be obtained from Eq. 19,. When 

substituting the values of the constants A (Eq.23) 
and B (Eq.21).If we assume a Gaussian distribution 
for the contaminated plume in y-direction, the final 
formula of the total pollutant concentration 

z)y,(x,χ  can be written as: 

                                                                                   

                                           
      (24) 
 
 
6. Summary and Conclusions 

In this work we present an analytical 
treatment to solve the advection – diffusion 
equation describing the atmospheric dispersion of 
pollutants released from an elevated point source. 
In the model, we take into account more realistic 
physical boundary conditions. 

 The ground is considered as reflector and 
absorber surface for the pollutants reaching it. 
Also, we take into consideration the existence of 
capping inversion layer at which the pollutants are 
not able to penetrate, and we assume that this layer 
is located at height a above the ground surface. The 
wind velocity profile is taken as power law 
variation with the height z in the vertical direction. 

The solution of the differential equation is 
obtained in terms of Bessel function of the first 
kind. Due to the very limited data concerning 
atmospheric dispersion under the same group of 
boundary conditions adopted in our study, 
specially, the reflectivity and absorptive of the 
ground surface for the pollutants, the present model 
could not be validated by comparison its result with 
either experimental data or another models. We 
think when suitable data becomes available, 
namely, absorption and reflection of ground surface 
for the pollutants, deposition velocities of the 
pollutants under consideration, inversion layer 
heights and the source characteristics, we are 
confident to point out that the results of the present 
model can be validated easily.   
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