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Abstract: This paper mainly studies the singularities of Gauss Map of pedal hypersurface in R n +1. It contains the 
geometry of pedal hypersurfaces in Rn +1 and their Gauss maps. The singularity of Gauss map of the pedal 
hypersurface using the rank of jacobian matrix of Gauss map is given and classified. The sets of singularities and its 
graphs under the Gauss map are plotted. 
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1. Geometry of Pedal Hypersurfaces in Euclidean 
Space 
       In this section we review the classical theory of 

differential geometry on hypersurfaces in Euclidean 
space R n +1 [ 1],[ 2],[3]. 
      Let X : U   R n +1 be an embedding and U is an 
open subset of R n , and identify M and U through the 
embedding X , i.e., M = X ( U ), in this case M is 
called hypersurface in R n +1 . The tangent space of M 
at p = X ( u ), u   U is 

    
    (1) 

and 
the unit normal vector field along X : U   Rn+1 is 
given by: 

 
       (2)  
 

Where 

 
where {e1 , …, en+1}  is the canonical basis of Rn+1 
and 

      A map G : U   Sn defined by G ( u ) = N ( u ) is 
called the Gauss map of M =X ( U ), the derivative of 
the Gauss map dG ( u ) : Tp M  Tp M can be 
interpreted as a liner transformation on the tangent 

space T p M .The linear transformation S p = -dG (u) 
is called the shape operator (or Weingarten map) of 
the hypersurface M = X ( U ) . The eigenvalues of Sp 
are called the principal curvatures. and the 
eigenvectors of Sp are called the principal directions 
on M . By definition, kp is a principal curvature if and 
only if det ( Sp - kp I ) = 0. The Gauss-Kronecker 
curvature of M = X ( U ) at p = X ( u ) is defined to 
be K ( u ) = detSp. 

     In the extrinsic differential geometry, totally 
umbilical hypersurfaces are considered to be the 
model hypersurfaces in Euclidean space. Since the 
set { Xi ( i = 1, …, n )} is linearly independent, the 

Riemannian metric (first fundamental form) on M = 

X ( U )is given by ds2 = 
n
i 1 gij dui duj , where gij 

=<Xi(u),Xj(u)> for any u   U . The second 

fundamental coefficients lij are given by lij =<-Ni (u), 
Xj (u)> =<N (u), Xij (u)>, for any u   U. Recall the 
following Weingarten formula [4]: 

 
               (3) 
 

Where 
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By the Weingarten formula, the Gauss-Kronecker 
curvature is given by                                       (4)  
 
 
 
       For a hypersurface X: U  Rn+1, the pedal 

hypersurface of M = X ( U ) is M̂  and defined by : 
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where S ( u ) =< X ( u ) , N (u) > 0 is the support 

function on M and )(ˆˆ UXM   is identified with U  

 

through the embedding X̂  [3]. The tangent space of  

M̂  at )(ˆˆ uXp  is defined as: 

)ˆ(ˆ
ˆ MTp  

The unit normal vector field along  X̂ : U   Rn+1 
can b e obtained and is given by: 

                                   (6) 

Since the set { iX̂ } is linearly independent, the 

Riemannian induce metric on )(ˆˆ UXM   (first 

fundamental form) is given as: 

 

where )(ˆ),(ˆˆ uXuXg jiij   and )(),( uNuN jiij   

is the third fundamental metric for any u   U .The 

discriminant ĝ  on pedal hypersurface M̂  is given 

by the relation: 

(7) 
 
where g = det(gij), l = det(lij ) and K (u) is the 
Gaussian curvature of the hypersurface M . 

The second fundamental co efficients lij are given by: 

 

for any u   U . Thus Weingarten formula on M̂  is 
given as: 

(8) 
 
Where 

1))(ˆ()(ˆ)(ˆ)(ˆ)(  ugugandugulul kj
kjkj

ik
j

i
  . 

From (8) it is easy to see that, the Gauss-Kronecker 

curvature K̂  is given by: 

                                           (9) 

Explicitly the Gauss-Kronecker K̂  curvature can be 
written as: 

(10) 
and the mean curvature is given by: 

 

  
where H(u) is the mean curvature of the hypersurface 

M at u   U. The third fundamental coefficients are 
given by: 

(11) 
 

By the definition the point q = MuX ˆ)(ˆ   is a 

parabolic point if 0)(ˆ uK . Thus the hyperbolic 

set on M̂  is define by (using eq. (10)) : 
 
 

 
 
 
 

 
 

or explicitly by: 

  (12) 
Recall the following results for the hyp ersurface 

)(ˆˆ UXM   in Rn+1 [4]. 

Proposition 1. Suppose that )(ˆˆ UXM   is totally 

umbilical, ( pk̂ is constant k̂  ). Thus we have: 

1) If 0ˆ k , then M̂   is a part of a hypersphere. 

2) If 0ˆ k  , then M̂  is a part of a hyperplane. 

Proposition 2. For the hypersurface )(ˆˆ UXM   in 

Rn+1 .The following are equivalent: 

1) M̂ is totally umbilic with 0ˆ k . 
2) The Gauss map is a constant map. 

3) M̂ is a part of a hyperplane. 
 
 
2.  Singularities of Gauss Map of pedal 
hypersurface 

The Gauss map is singular at q M̂  when 0ˆ K , 
i. e., on the parabolic set given by equation (12). 
From the relation: 

(13) 
From this definition it follows that the Gauss map is 
singular when 
i.e, the Jacobian matrix of the normal vector field 

)(ˆ uN  is singular [ 5],[ 6],[ 7]. 
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Gauss map has a singular point u = u0 when the rank 

of the Jacobian matrix of )(ˆ
0uN  less than n (the 

dim of U ), i.e., 

(14) 
To study the singular points of Gauss map we make a 
modification of Gauss map as follows: if the Gauss 
map has a singular point we make projection of N (u) 
to the ( n+1) hyperplanes projections) and find the set 
of singular points of it (discriminant set).Thus we 
have 

(15) 

where the position )(
ˆ̂

uN k  indicates that the 

component )(ˆ uN k  is missing, The singular set give 

us a new hypersurface with dimension n which can 
be written, using the Mong form, as the following: 

                            (16) 
The parametrization (16) define a hypersurface 
(singular set) contains or may not contains singular 
points inheritance from the main hypersurface M . 
For study the graph of singular set under the Gauss 
map, consider the form 

(17) 
 
Definition 1. [8] A map f: Rn  Rm has a singularity 
of type Sk at the point u0 if the rank of f at u0 is 
min(m,n )-k, the number k is called the deficiency of 
the singularity, if k = 0 then u0 is regular point. 
Definition 2. [9] The level set attached to the 
hypersurface M is defined as the following: let un = 
Z(u1, u2, …, un-1) = c, c is constant, if c = 0 that given 
the level set V0 = {(u1, u2, …, un-1): un = 0} and the 
other level sets are 

Vc={(u1, u2, …, un-1): un = 0},    0c  
Another version of the definition of level sets is 
contours as given in the following 
Definition 3. We say the point p on a surface M with 
a parametric representation is a contour point if and 
only if                  N.pc=0 
Where N is the normal vector field on the surface M 
and c is the view point. The contour line or contour, 
for short, of a surface is the set of all its contour 
points. 
The determination of the contour line of a surface in 
the general case involves a numerical method to find 
the zeros of a real-valued function of n real variables 
in a domain (u1, u2, …, un)   U. An algorithm and its 
implementation can be found in [10]. 
 
 

3. Application 
As an application, we consider a hypersurface 
MR4, i.e., we try to study the singularities of Gauss 

map of pedal hypersurface M̂  to the hypersurface M 
given by: 

                            (18) 
This hyp ersurface can b e given by the regular 
parametrization 

(19) 

 
The normal vector field on the hypersurface (19) is 
given as: 

                     (20) 

Where  
The support function S on the hypersurface M is 
given by: 
 

                                                         (21) Thus the 

pedal hypersurface M̂ attached to the given 
hypersurface M is defined by (from (20),(21)): 

             (22) 

The normal vector field N̂  on a hypersurface M̂ can 
be obtained (from (22)) as in the form: 

 (23) 

The Jacobian matrix (derivative) of N̂  ( u, v, w ) can 
be written in the following form: 

                   (24) 
The factors in the matrix of equation (24) are 
calculated. 

The rank of D N̂ (u, v, w) at (0, 0, 0) is equal to zero, 

so N̂ (u, v, w) is singular at (0, 0, 0). Thus we have 
the following: 

Lemma 1. The Gauss map of M̂ has a singularity of 
type S3 at the origin point. 
To study the singularities of Gauss map of pedal 
hypersurface, we use the orthogonal projections on 
the hyperplanes xi = 0 ; i = 1, 2, 3, 4. Thus we have 

four surfaces are denoted by i respectively, which 

are given explicitly by as (Fig(1),(2)) : 
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Thus, we have 4 parabolic sets SI, SII, SIII, SIV 
corresponding to the hyperplanes Xi respectively. 

Using the modified normal vector field modN̂ (u, v, w) 

for each parabolic set as in the following: 

I- For the surface 4 , we have a modified normal 

vector field, as in the form:  

(25) 
The singular (discriminant or parabolic set) set in this 
case is given from:  

(26) 

Since 1+8w2 0 ( wR ), thus the singular set SI 
consists of 2 types of singularity as in the following 
(fig. 3): 

 

  (27) 

Then the parabolic surfaces
1I

M corresponding 

to
1I

S , is given by the parametrization: 

(28) 

For the 2nd type
2IS we have four roots, wi(i =1, 2, 3, 

4) as functions in u and v , so we have four pranches 

iIS
2

, i =1, 2, 3, 4 and their corresponding parabolic 

surfaces
iIM

2
are given as: 

                         )),(,,(:
2

vuwvuM iI i

 

The surfaces
2IS under the modified normal vector 

field modN̂ (u, v, w) and their con-tours are shown by 

the fig. ((4),(5)). 

II- For the surface 3 , we have a modified normal 

vector field, as in the form:  

 (29) 
The singular (discriminant or parabolic set) set in this 
case is given from:  

 (30) 

Since 1+8w2 0 ( wR ), thus the singular set SII 
consists of 3 types of singularity as in the following 
(fig. 6): 

,0:,0:
10

 fSwS IIII
 

 (31) 

Then the parabolic surfaces
1IIM corresponding 

to
1IIS , is given by the parametrization: 

 (32) 

For the 3rd type
2IIS we have four roots, wi(i =1, 2, 3, 

4) as functions in u and v , so we have four pranches 

iIIS
2

, i =1, 2, 3, 4 and their corresponding parabolic 

surfaces
iIIM

2
are given as: 

                         )),(,,(:
2

vuwvuM iII i

 

The surfaces
0IIS and

iIIS
2

under the modified normal 

vector field modN̂ (u, v, w) and their contours are 

shown by the fig. (7), (8),( 9). 

III- For the surface 2 , we have a modified normal 

vector field, as in the form:  

 (33) 

Similarly as in the case I, II, 1+8w2 0 ( wR ), 
thus the singular set SIII consists of 3 types of 
singularity as in the following (fig. 10) 

,0:,0:
10

 fSvS IIIIII
 

 (34) 

Then the parabolic surfaces
1IIIM corresponding 

to
1IIIS , is given by the parametrization: 

 (35) 

For the 3rd type
2IIIS we have four roots, vi(i =1, 2, 3, 

4) as functions in u and w , so we have four pranches 

iIIIS
2

, i =1, 2, 3, 4 and their corresponding parabolic 

surfaces
iIIIM

2
are given as: 

                        )),(,,(:
2

wuvvuM iIII i
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The surfaces
0IIIS and

iIIIS
2

under the modified 

normal vector field modN̂ (u, v, w) and their contours 

are shown by the fig. (11), (12),(13). 

IV- For the surface 1 , we have a modified normal 

vector field, as in the form:  

 (36) 
Similarly the singular set of this case is given from: 

(37) 

Thus the singular set SIV consists of 3 types 
0IVS , 

1IVS ,
2IVS corresponding to (fig. 10): 

,0,0  fu  

(38) 

Respectively. 

Then the parabolic surfaces corresponding to
1IVS is 

coincident with: 

 (39) 

For the 3rd type
2IVS we have four roots, ui(i =1, 2, 3, 

4) as functions in v and w , so we have four pranches 

iIVS
2

, i =1, 2, 3, 4 and their corresponding parabolic 

surfaces
iIVM

2
are given as: 

                         )),(,,(:
2

wuvvuM iIV i
 

The surfaces
0IVS and

iIVS
2

under the modified normal 

vector field modN̂ (u, v, w) and their contours are 

shown by the fig. (11), (12),(13). 
 
4. Conclusion 
From (28), (32), (35) and (39), one can see that there 
exist a common intersection between the singular sets 

and the four projections where 
11 III MM  

11 IVIII MM  and 
22 III MM

22 IVIII MM   . 

The analytical solutions for the singularities of the 
Gauss maps and their contours on the pedal 
hypersurface are geometrically interpreted as show in 
fig. ((4), (5), (7), (8), (9), (11),(12), (13))(left), Also, 
the contour problem and the problem to find lines of 
intersection of surfaces and planes has been solved in 
the general case as shown in fig. ((4), (5), (7), (8), (9), 
(11), (12), (13))(right). 
 

Figures 
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