DOUBLE PARAPROXIMITY SPACES

A. Kandil¹, O. Tantawy², K. Barakat³, AND N. Abdanabi⁴

^{1,3,4} Mathematics Department, Faculty of Science, Helwan University, P.O. Box 11795, Cairo Egypt. ²Mathematics Department, Faculty of Science, Zagazig University nagahlibya@yahoo.com

Abstract: We introduce the concept of a double completely normal topological space or DT_5 – space and double Paraproximity space showing that every double space induces a double completely normal topological space and vice verse.

[A. Kandi I, O. Tantawy, K. Barakat, and N. Abdelnaby **Double Paraproximity Spaces**] Life Science Journal,. 2011; 8(4):800-804] (ISSN: 1097-8135). <u>http://www.lifesciencesite.com</u>.

Keywords: topological space; double Paraproximity space; mathematics.

1. Introduction

The mathematical idea of double sets was firstly introduced by Kere [9] and studied in many articles by A. Kandil and others "[1], [4], [6], [7], [8]". They introduced and studied many topics in the double topology. The Paraproximity structure subject has been introduced by E. Hayashi in 1964 [3]. Recently, Kandil and others introduced the fuzzy Paraproximity structure [5].

In this paper we shall introduce the separation axiom DT_5 (double completely normal) on double topological spaces and study some of its properties. Also, we shall introduce the notion of DP-proximity in the case of double topological space showing that every DP-Proximity on X generates a double completely normal (DT₅) topology.

2. Preliminaries

Throughout this section we mention the concepts and notations which we shall use in this paper.

2-1 Double set

Definition 2.1.1. [8] Let X be a non empty set.

- 1. A double set <u>A</u> is an ordered pair $\underline{A} = (A_1, A_2) \in P(X) \times P(X)$ such that $A_1 \subseteq A_2$.
- 2. $D(X) = \{(A_1, A_2) \in P(X) \times P(X) : A_1 \subseteq A_2\}$ is the family of all double sets on *X*.
- 3. Let $x \in X$, then the double sets $x_{\frac{1}{2}} = (\phi, \{x\})$ and $x_1 = (\{x\}, \{x\})$ are said
 - to be double points of X.

$$D(X)_p = \{x_i : x \in X, t = \{\frac{1}{2}, 1\}\}$$
 is the set of all double points on *X*.

- 4. Let $\eta_1, \eta_2 \subseteq P(X)$. Then the double product of η_1 and η_2 is denoted by $\eta_1 \hat{\times} \eta_2$ and is defined by: $\eta_1 \hat{\times} \eta_2 = \{(A_1, A_2) \in \eta_1 \times \eta_2 : A_1 \subseteq A_2\}.$
- 5. The double set $\underline{X} = (X, X)$ is called the universal double set.
- 6. The double set $\phi = (\phi, \phi)$ is called the empty double set.

Definition 2.1.2. [8] Let $\underline{A} = (A_1, A_2), .$ $\underline{B} = (B_1, B_2) \in D(X)$. Then:

i-
$$\underline{A} = \underline{B} \Leftrightarrow A_i = B_i, i = 1, 2$$
.

$$II- \underline{A} \subseteq \underline{B} \Leftrightarrow A_i \subseteq B_i, i = 1, 2.$$

III- If
$$\{\underline{A}_s : s \in S\} \subseteq D(X)$$
, then

$$\bigcup_{s \in S} \underline{A}_{s} = (\bigcup_{s \in S} \underline{A}_{1s}, \bigcup_{s \in S} \underline{A}_{2s})$$
 and

$$\bigcap_{s\in S} \underline{A}_{s} = (\bigcap_{s\in S} \underline{A}_{ls}, \bigcap_{s\in S} \underline{A}_{2s})$$

iv- The complement of a double set <u>A</u> is $\underline{A}^{c} = (\underline{A}^{c}_{2}, \underline{A}^{c}_{1})$

$$\mathbf{v} \cdot \underline{A} - \underline{B} = \underline{A} \cap \underline{B}^c \cdot$$

Proposition 2.1.3. [8] $(D(X), \bigcup, \bigcap, {}^{c})$ is a Morgan Algebra.

Definition 2.1.4. [8] For any two double sets <u>*A*</u> and <u>*B*</u>, <u>*A*</u> is called quasi-coincident to <u>*B*</u>, denoted by <u>*A*</u> <u>*Q*</u><u>*B*</u>, if $A_1 \cap B_2 \neq \phi$ or $A_2 \cap B_1 \neq \phi$.

<u>A</u> is not quasi – coincident to <u>B</u>, denoted by <u>A</u> \overline{Q} <u>B</u>, if $A_1 \cap B_2 = \phi$ and $A_2 \cap B_1 = \phi$.

Theorem 2.1.5. [8] Let $\underline{A}, \underline{B}, \underline{C} \in D(X)$ and $x_t \in D(X)_n$. Then :

1-
$$AQB \Rightarrow A \cap B \neq \phi$$

2- $\underline{AQB} \Leftrightarrow \exists x_t \in \underline{A} \text{ such that } x_t \underline{QB}$ 3- $\underline{A} \ \overline{Q} \ \underline{B} \Leftrightarrow \underline{A} \subseteq \underline{B}^c$, and $x_t \ \overline{Q} \ \underline{A} \Leftrightarrow x_t \in \underline{A}^c$. 4- $\underline{A} \ \overline{Q} \ \underline{A}^c$. 5- $\underline{A} \subseteq \underline{B} \Leftrightarrow x_t \ \underline{QA} \Rightarrow x_t \ \underline{QB}$. 6- $\underline{A} \ \overline{Q} \ \underline{B}, \ \underline{B} \subseteq \underline{C} \Rightarrow \underline{A} \ \overline{Q} \ \underline{C}$. 7- $x_t \ \overline{Q} \ (\underline{A} \cup \underline{B}) \Leftrightarrow x_t \ \overline{Q} \ \underline{A} \text{ and } x_t \ \overline{Q} \ \underline{B}$. 8- $x_t \ \overline{Q} \ \underline{A} \cap x_t \ \overline{Q} \ \underline{B}$.

2.2 Double Topological Space

Definition 2.2.1. [8] Let X be a non-empty set. Then:

1- $\tau \subseteq D(X)$ is called a double toplogy on X if the following axioms are satisfied:

 $DT_1 \qquad \underline{\phi}, X \in \tau.$ $DT_2 \qquad \text{if } \underline{A}, \underline{B} \in \tau, \text{ then } \underline{A} \cap \underline{B} \in \tau.$ $DT_3 \qquad \text{if } \{\underline{A}_s : s \in S\} \subseteq \tau, \text{ then } \bigcup_{\tau \in S} \underline{A}_s \in \tau.$

The pair (X, τ) is called a double topological space and member of τ are called open double set.

2- $\underline{F} \in D(X)$ is called a closed double set, if $\underline{F}^c \in \tau$, and the family of all closed double sets is denoted by $\tau^c = \{\underline{F} : \underline{F}^c \in \tau\}$.

3- A double set \underline{O}_{x_t} is called a double neighborhood of the double point x_t if $x_t \in \underline{O}_{x_t} \in \tau$. The family of all double neighborhoods of *xt* will be denoted by $\underline{N}(x_t)$. 4- If $\underline{A} \in D(X)$, Then:

(i) The closure of <u>A</u> is denoted by $\overline{\underline{A}}$ or $cL(\underline{A})$ and is defined by $\overline{\underline{A}} = \bigcap \{ \underline{F} : \underline{A} \subseteq \underline{F} \in \tau^c \}$. (ii) The interior of <u>A</u> is denoted by <u>A</u>^o or int(<u>A</u>) and <u>A</u>^o = $\bigcup \{ \underline{V} : \underline{V} \in \tau, \underline{V} \subseteq \underline{A} \}$.

(iii) The derived double set of \underline{A} is denoted by \underline{A}^d and is given by: $x_t Q \underline{A}^d \Leftrightarrow x_t Q (\underline{A} - \{x_t\}).$

Definition 2.2.2. [6] A double topological space (X, τ) is called : 1- $D - R_{\theta}$ iff $x_t \overline{Q} = \overline{y_r}$ implies $y_r \overline{Q} = \overline{x_t}$.

 $2 - D - R_{l} \text{ iff } x_{t} \overline{Q} \quad \overline{y_{r}} \text{ implies there exist } \underline{O}_{x_{t}},$

 \underline{O}_{y_r} such that $\underline{O}_{x_t} \overline{Q} \underline{O}_{y_r}$.

3- $D - R_2$ iff $x_t \overline{Q} \quad \underline{F}, \ \underline{F}^c \in \tau$ implies that there exist $\underline{O}_{x_t}, \ \underline{O}_{\underline{F}}$ such that $\underline{O}_{x_t} \ \overline{Q} \quad \underline{O}_{\underline{F}}$. 4- $D - R_3$ iff $\underline{F} \ \overline{Q} \quad \underline{G}$ and $\underline{F}, \ \underline{G} \in \tau^c$ implies

that there exist $\underline{O}_{\mathrm{F}}$, $\underline{O}_{\mathrm{G}}$ such that $\underline{O}_{\mathrm{F}} \overline{Q}$ $\underline{O}_{\mathrm{G}}$. 5- $D - T_0$ iff $x_t \overline{Q}$ y_r implies $y_r \overline{Q}$ $\overline{x}_t or$ $x_t \overline{Q}$ \overline{y}_r .

6- D- T_1 iff $x_t \ \overline{Q} \ y_r$ implies $y_r \ \overline{Q} \ \overline{x}_t$ and $x_t \ \overline{Q} \ \overline{y}_r$.

7- *D*- T_2 iff $x_t \ \overline{Q} \ y_r$ implies that there exist

 $\underline{O}_{x_t}, \underline{O}_{y_r} \text{ such that } \underline{O}_{x_t} \overline{Q} \ \underline{O}_{y_r}$ 8- $D - T_3$ iff it is $D - R_2$ and $D - T_1$. 9- $D - T_4$ iff it is $D - R_3$ and $D - T_1$.

Theorem2.2.3. [6] The interrelation between the pervious axioms given in the following diagram:

2.3 Completely normal spaces and paraproximity spaces

Definition2.3.1. [king] An ordinary toplogical space (X, τ) is called completely normal space iff for every pair of separated sets *A*, *B* $\subset X$, there exist open sets *U*, *V* $\subset X$ such that $A \subset U, B \subset V$ and $U \bigcap V = \phi$.

Definition 2.3.2. [king] A mapping $\delta : P(X) \\ \times P(X) \rightarrow \{0, 1\}$ is called a paraproximity on a set X if the following axioms are satisfied: 1. $\delta (A, \phi) = 1, \forall A \subseteq X.$ 2. $\delta (A, B \bigcup C) = \delta (A, B) \cdot \delta (A, C), \forall A, B, C \subseteq X.$ 3. For an arbitrary index set $\wedge, \ \delta \ (\bigcup_{\lambda \in \wedge} A_{\lambda},$

 $B = 0 \iff \delta (A_{\mu}, B) = 0$, for some $\mu \in A$.

4. for any two points x, y of X, $\delta(x, y) = 0$ $\Leftrightarrow x = y$.

5. δ $(A, B) = \delta$ $(B, A) = 1 \implies \exists U, V \subseteq X$ with $U \cap V = \phi$, satisfying δ $(A, U^c) = \delta$ $(B, V^c) = 1$ and δ $(U, U^c) = \delta$ $(V, V^c) = 1$.

Theorem 2.3.3. [king] Let (X, δ) be a paraproximity space. Then the collection $\tau \delta = \{V \subseteq X: \delta \ (V, V^c) = 1\}$ is a completely normal topology on X.

Theorem 2.3.4. [king] Let (X, τ) be a completely normal ordinary topological space. Then the relation δ given by: $\delta(A, B) = 0$ $\Leftrightarrow A \cap \overline{B} \neq \phi$, is a paraproximity on *X*, for which $\tau_{\delta} = \tau$

3- Double complete normal spaces

Definition 3.1. Let (X, τ) be a double topological space, and let $\underline{A}, \underline{B} \in D(x)$. \underline{A} and \underline{B} are called double separated sets if $\underline{A}, \overline{Q}, \overline{B}$

and $\underline{B} Q \underline{A}$.

Lemma 3.2. Let (X, τ) be a double topological space. Then:

(i) \underline{A} and \underline{B} are double separated and $\underline{A}_1 \subseteq \underline{A}, \underline{B}_1 \subseteq \underline{B} \Rightarrow \underline{A}_1, \underline{B}_1$ are double separated.

(ii) <u>A</u>, $\underline{B} \in \tau^c$ and <u>A</u> \overline{Q} <u>B</u> \Rightarrow <u>A</u> and <u>B</u> are double separated.

(iii) <u>A</u>, <u>B</u> $\in \tau$ and <u>A</u> \overline{Q} <u>B</u> \Rightarrow <u>A</u> and <u>B</u> are double separated.

Proof: Clear.

Definition 3.3. A double topological space (X, τ) is called DR₄-space if for every two double separated sets <u>A</u>, <u>B</u> in X, $\exists O_A, O_B$ such that $O_A \overline{Q} O_B$.

Definition 3.4. A double space (X, τ) is called double completely normal space (or DT_{5} -space) if it is DR_4 and DT_1 .

Proposition 3.5. $(X, \tau) \in DT_5$ $\Rightarrow (X, \tau) \in DT_4.$

Proof: The result following from Definition 3.4 and Lemma 3.2.

Theorem 3.6. Every closed double subspace of a DT_5 -space is DT_4 .

Proof: Let $(X, \tau) \in DT_5$ -space, Y be a double subspace of X, and <u>A</u>, <u>B</u> $\in \tau_Y^c$ such

that $\underline{A} \ \overline{Q} \ \underline{B}$. Then $\underline{A}, \underline{B} \in \tau^{c} \land \underline{A} \ \overline{Q} \ \underline{B}$ Lemma3.2.5 $\Rightarrow \underline{A}, \underline{B}$ are double separated in X $X \in DT_{5}$ $\Rightarrow \exists \underline{O}_{\underline{A}}, \underline{O}_{\underline{B}}$ such that $\underline{O}_{\underline{A}} \overline{Q} \ \underline{O}_{\underline{B}}$ $\Rightarrow (\underline{Y} \cap \underline{O}_{\underline{A}} \overline{Q} \ \underline{Y} \cap \underline{O}_{\underline{B}}) \Rightarrow (Y, \tau_{Y}) \in DR_{3}$ \land clearly $(Y, \tau_{Y}) \in DT_{1} \Rightarrow (Y, \tau_{Y})$ $\in DT_{4}$.

Definitions 4.1 Let $\underline{\delta}: D(X) \times D(X) \to \{0,1\}$

be a relation on D(X) that satisfies the following axioms:

 $DH_1 \quad \underline{\delta} \ (\underline{\phi}, \underline{X}) = \underline{\delta} \ (\underline{X}, \underline{\phi}) = 1.$

 $DH_2 \qquad \underbrace{\delta}_{\underline{A}, \underline{B}} \underbrace{\underline{C}}_{\underline{C}} = \underbrace{\delta}_{\underline{A}, \underline{B}} \underbrace{\underline{A}, \underline{C}}_{\underline{A}, \underline{C}},$ $\forall \underline{A}, \underline{B}, \underbrace{\underline{C}}_{\underline{C}} \in D(X).$

 DH_3 for an arbitrary index set \land , δ ($\bigcup A_3, B$) = 0 $\Leftrightarrow \delta(A_3, B) = 0$, for

$$\underbrace{\underbrace{\partial}}_{\lambda \in \wedge} (\underbrace{\bigcup}_{\lambda \in \wedge} \underline{A}_{\lambda}, \underline{b}) = 0 \iff \underbrace{\partial}_{\lambda \in \mu} (\underline{A}_{\mu}, \underline{b}) = 0,$$

some $\mu \in \wedge$.

This $\underline{\delta}$ is called a double H- proximity on X, and the pair $(X, \underline{\delta})$ is called a doubleHproximity space (or an DHP- space, for short). **Definition 4.2.** An DHP- space (X, δ) is

called separated if δ satisfies the following

Axiom: DH_4 $\underline{\delta}(x_b, y_r) = 0 \Leftrightarrow x_t \ Q \ y_r, \ \forall \ x_b, y_r \in D(X)_p.$

If $\underline{\delta}$ is a separated DH – proximity. Then $(X, \underline{\delta})$ is called a separated DHP- space (or an SDHP-space, for short).

Proposition 4.3. Let $(X, \ \delta)$ be an SDHPspace, then $\delta (\underline{A}, x_t) = 0 \Leftrightarrow \underline{A} Q x_t$.

Proof:
$$\underline{\delta}(\underline{A}, x_t) = \underline{\delta}(\bigcup_{\substack{t \in A \\ y_t \in A}} y_t, x_t) = 0 \Leftrightarrow^{DH_3}$$

 $\underbrace{\delta}_{\text{for some } y_r} \underbrace{O}_{x_t} = 0, \text{ for some } y_r \in \underline{A}. \quad \Leftrightarrow y_r \ Q x_t,$ for some $y_r \in \underline{A} \Leftrightarrow \underline{A} \ Q x_t.$

Definition 4.4. An SDHP- space $(X, \underline{\delta})$ is called a double paraproximity space (or a DPP-space, for short) if $\underline{\delta}$ satisfies the following axiom.

 $DH_5 \qquad \underline{\delta} \quad (\underline{A}, \underline{B}) = \underline{\delta} \quad (\underline{B}, \underline{A}) = 1 \implies \exists \underline{C}, \underline{D}$ $\in D(X) \text{ Such that } \underline{C} \quad \overline{\underline{Q}} \quad \underline{D}, \text{ and } \underline{\delta} \quad (\underline{A}, \underline{C}^c) =$ $\underline{\delta} \quad (\underline{C}, \underline{C}^c) = \underline{\delta} \quad (\underline{B}, \underline{D}^c) = \underline{\delta} \quad (\underline{D}, \underline{D}^c) = 1.$

Lemma 4.5. Let $(X, \overline{\delta})$ be a DPP-space. Then:

i-If $\delta (\underline{A}, \underline{B}) = 1$, then $\delta (\underline{A}, \underline{C}) = 1$, for any $\underline{C} \subseteq \underline{B}$. If $\delta (\underline{A}, \underline{B}) = 1$, then $\delta (\underline{C}, \underline{B}) = 1$, iifor any $\underline{C} \subseteq A$. If $\delta(\underline{A}, \underline{B}) = 1$, then $\underline{A} \ \overline{Q} \ \underline{B}$. iii- $\delta(x_t^{c}, x_t) = 1$, for any double point iv $x_t \in D(X)_P$. **Proof**: (i) Since $\underline{B} = \underline{B} \bigcup \underline{C} (\underline{C} \subseteq \underline{B})$, and $\frac{\delta}{\delta} (\underline{A}, \underline{B}) = 1. \quad \underline{\delta} (\underline{A}, \underline{B}) = \underline{\delta} (\underline{A}, \underline{B} \bigcup \underline{C}) = \underline{\delta} (\underline{A}, \underline{B}) \cdot \underline{\delta} (\underline{A}, \underline{C}) = 1 \text{ by } DH_2 \text{ .Then}$ $\delta (\underline{A}, \underline{C}) = 1.$ (ii) Proof of (ii) is similar to proof of (i). (iii) $\underline{\delta} (\underline{A}, \underline{B}) = 1 \implies \underline{\delta} (\bigcup_{X_u \in A} x_t, \underline{B}) = 1$ DH₃ $\Rightarrow \delta (x_t, \underline{B}) = 1, \forall x_t \in \underline{A}. \Rightarrow$ $\forall x_t \in \underline{A}, \ \underline{\delta} \ (x_t, y_r) = 1, \qquad \forall y_r \qquad \in \underline{B}$ DH_4 $\stackrel{\text{DII}_4}{\Leftrightarrow} x_t \overline{Q} y_r, \forall x_t \in \underline{A}, y_r \in \underline{B} \Leftrightarrow \underline{A} \overline{Q} \underline{B}.$ (iv) Since $x_t^c \ \overline{Q} \ x_t \Rightarrow y_r \ \overline{Q} \ x_t$, $\forall y_r \in x_t^c$ DH_4 $\overset{\mathbf{DH}_4}{\Leftrightarrow} \underline{\delta} (y_r , x_t) = 1, \quad \forall y_r \in x_t \overset{c}{\leftrightarrow} \overset{\mathbf{DH}_3}{\Leftrightarrow}$ $\delta(x_t^c, x_t) = 1$ (By proposition 4.3). **Theorm 4.6.** Let (X, δ) be a DPP – Space. Then $\tau_{\underline{\delta}} = \{ \underline{V} \in D(X) : \underline{\delta} (\underline{V}, \underline{V}^c) = 1 \}$ is a double topology on X, induced by δ . **Proof:** DT_1 δ (\underline{X} , \underline{X}^c) = δ (\underline{X} , ϕ) = $\delta \ (\phi, \phi^{c}) = \delta \ (\phi, \underline{X}) = 1 \Longrightarrow \underline{X}, \ \phi \in \tau_{\delta}.$ $DT_2 \quad \underline{U}, \ \underline{V} \in \tau_{\delta} \Rightarrow \delta \ (\underline{U}, \ \underline{U}^c) = 1 \text{ and }$ δ (<u>V</u>, <u>V</u>^c) = 1 and by (ii) in Lemma (4, 5), $\overline{\delta}$ ($\underline{U} \cap \underline{V}, \underline{U}^c$) = 1 and δ ($\underline{U} \cap \underline{V}, \underline{V}^c$) = 1, Hence (by DH_2), δ ($\underline{U} \cap \underline{V}, \ \underline{U}^c \cup \underline{V}^c$) = δ (<u>U</u> \cap <u>V</u>, (<u>U</u> \cap <u>V</u>)^c) = 1. Consequently $\underline{U} \cap \underline{V} \in \tau_{\delta}.$ DT_3 Let \underline{V}_i , $\in \tau_{\delta}$, $\forall i \in I$, for some index set *I*. Then δ ($\underline{V}_i, \underline{V}_i^c$)=1, $\forall i \in I \Rightarrow$ $\underline{\delta} \quad (\bigcup_{i \in I} \underline{V}_i \ , \ \underline{V}_i \ ^c) = 1, \ \forall i \in I \xrightarrow{4.5 (i)} \Rightarrow$ $\underline{\delta}$ $(\bigcup_{i \in I} \underline{V}_i \quad , \quad \bigcap_{i \in I} \quad \underline{V}_i \quad ^c) = 1$ $\Rightarrow \underline{\delta} (\bigcup_{i \in I} \underline{V}_i, (\bigcup_{i \in I} \underline{V}_i)^c) = 1 \Rightarrow \bigcup_{i \in I} \underline{V}_i \in \tau_{\underline{\delta}}.$ Therefore, $\tau_{\underline{\delta}}$ is a double topology on X, generated by $\underline{\delta}$.

Corollary 4.7. $\underline{V} \in \tau_{\underline{\delta}} \Leftrightarrow \underline{\delta} (x_b V^c) = 1$, $\forall x_t \in \underline{V}$. **Theorem 4.8.** Let (X, δ) be a DPP- space.

Then $\delta (\underline{A}, \underline{B}) = 0 \implies A Q \overline{B}$. **Proof:** Let δ (<u>A</u>, <u>B</u>) =0 and suppose <u>A</u> \overline{Q} B $\Rightarrow A \subseteq \underline{\overline{B}}^{C}$, if we choose all open double sets Q, which contain the closed double set $\underline{\underline{B}}$, then $\bigcap_{\lambda} \underline{\underline{O}}_{\lambda} = \underline{\underline{B}} \Rightarrow (\underline{\underline{A}} \subseteq \underline{\underline{B}}^{C}) \underline{\underline{B}}^{C} =$ $(\bigcap \overline{\underline{O}}_{\lambda})^{c} = \bigcup \overline{\underline{O}}_{\lambda}^{c}$ Since $\overline{\underline{O}}_{\lambda}$ is open $\forall \lambda$, $\delta(\underline{\overline{O}}_{\lambda}^{c} \quad , \quad \underline{\overline{O}}_{\lambda})=1, \qquad \forall \lambda. \Rightarrow$ 4.5 (i) $\underline{\delta} \qquad (\bigcup \, \underline{\overline{O}}_{\lambda}^{c}, \underline{\overline{O}}_{\lambda}) \qquad =1$ $\underline{\delta} (\bigcup_{\lambda} \underline{\overline{O}}_{\lambda}^{c}, \bigcap_{\lambda} \underline{\overline{O}}_{\lambda}) = 1 \xrightarrow{4.5 \text{ (ii)}} \underline{\delta} (\underline{A}, \underline{B}) = 1.$ This contradicts our assumption that $\delta (\underline{A}, \underline{B}) = 0.$ **Corollary 4.9.** Let (X, δ) be a DPP-space and let $x_t \in D(X)_p$, $\underline{A} \in D(X)$, Then: (i) $\delta(\underline{A}, x_t) = 0 \Leftrightarrow x_t \in \underline{A}$

(ii) $\delta(x_t, \underline{A}) = 0 \Longrightarrow x_t \in \overline{A}$.

Theorem 4.10: Let $(X, \underline{\delta})$ be a DPP- space, Then: $(X, \tau_{\delta}) \in DT_5$.

Proof: first, we prove that $\tau_{\underline{\delta}} \in DT_1$, forwhich we show that every double point of $D(X)_p$ is closed. Since $\underline{\delta}_{(x_t}{}^c, x_t) = 1$, $\forall x_t \in D(X)_p$ $\stackrel{4.6}{\Rightarrow} x_t{}^c \in , \tau_{\underline{\delta}} \ \forall x_t \in D(X)_p \Rightarrow x_t \in \tau_{\delta}^c, \ \forall x_t \in D(X)_p \Rightarrow (X, \tau_{\delta}) \in DT_1.$

Now we show that for every separated double sets <u>A</u>, <u>B</u> in X, $\exists \underline{O}_{\underline{A}}, \underline{O}_{\underline{B}}$ such that $\underline{O}_{\underline{A}}, \overline{Q}$ <u> $O_{\underline{B}}$ </u>. Since $\underline{\delta}(\underline{\overline{A}}^c, \underline{\overline{A}}) = 1$, and <u>A</u>, <u>B</u> are separated, then <u> $B_{\underline{C}} \subseteq \underline{\overline{A}}^c$ </u>. Consequantly, $\underline{\delta}(\underline{B}, \underline{\overline{A}}) = 1$ and $\underline{\delta}(\underline{B}, \underline{A}) = 1$, (by Lemma 4.5 (ii), (i)). Similarly, we can show that $\underline{\delta}(\underline{A}, \underline{B}) = 1$. Now $\underline{\delta}(\underline{A}, \underline{B}) = \underline{\delta}(\underline{B}, \underline{A}) = 1$ DH₅

 $\begin{array}{l} \overrightarrow{D} \Pi_{\delta} \\ \Rightarrow \\ \end{array} \exists \underline{C}, \underline{D} \in D(X) \text{ Such that } \underline{C} \ \overline{Q} \ \underline{D} \text{ and} \\ \\ \underline{\delta} \ (\underline{A}, \ \underline{C}^{c}) \\ = \\ \underline{\delta} \ (\underline{D}, \ \underline{D}^{c}) \\ =1 \\ \Rightarrow \\ \underline{C}, \ \underline{D} \in \tau_{\delta} \ (by \ 4.6), \text{ and} \\ \\ \underline{A} \subseteq \underline{C}, \ \underline{B} \subseteq \underline{D} \ (by \ 4.5 \ (iii)). \text{ Since } \ \underline{C} \ \overline{Q} \ \underline{D}, \\ \\ \text{then } (X, \tau_{\delta}) \in DT_{5}. \end{array}$

Theorem 4.11. Let (X, τ) be a double normal complete space. Then: $\delta: D(X) \times D(X) \longrightarrow \{0, 1\},$ given by $\delta (\underline{A}, \underline{B}) = 0 \Leftrightarrow \underline{A} Q \ \overline{B}, \forall \underline{A}, \underline{B} \in D(X)$, is a $\overline{\text{SD}}\text{H-proximity}$ on \overline{X} . Moreover, if satisfies DH₅, then $\tau_{\delta} = \tau$. **Proof:** $DH_1 \quad \underline{X} \ \overline{Q} \quad \delta \ \phi \implies \delta \ (\underline{X}, \ \phi) = 1,$ and $\phi \ \overline{Q} \ \underline{X} \Rightarrow \delta \ (\phi, \underline{X}) = 1.$ $DH_2 \qquad \delta (\underline{A}, \underline{B} \bigcup \underline{C}) = 0 \implies \underline{A} \ Q \ (\overline{B \bigcup C})$ $\Leftrightarrow \underline{A} \ Q \ (\underline{\overline{B}} \ \bigcup \underline{\overline{C}}) \ \stackrel{2.1.5}{\Leftrightarrow} \underline{A} \ Q \underline{\overline{B}} \text{ or } \underline{A} \ Q \underline{\overline{C}}$ $\Leftrightarrow \delta (\underline{A}, \underline{B}) = 0 \text{ or } \delta (\underline{A}, \underline{C}) = 0.$ $DH_3 \ \underline{\delta} \ (\bigcup_{i \in I} \underline{A}_i, \underline{B}) = 0 \iff (\bigcup_{i \in I} \underline{A}_i) \ Q \ \underline{B} \ \stackrel{2.1.5}{\Leftrightarrow}$ $\exists i_o \in I \quad \text{Such that} \quad \underline{A}_{i_0} \quad Q \stackrel{\overline{B}}{=} \quad \stackrel{2.1.5}{\Leftrightarrow}$ $\delta (\underline{A}_{i_0}, \underline{\overline{B}}) = 0$ for some $i_o \in I$. $DH_4 \qquad \underline{\delta} (x_t, y_t) = 0 \Leftrightarrow x_t \ Q \ \overline{y}_t \ \overset{(X, \tau) \in DT_1}{\Leftrightarrow}$ $x_t \ Q \ y_r, \ \forall \ x_b \ y_r \in D(X)_p.$ Thus δ is SDH-

Proximity on X. Moreover, if $\underline{\delta}$ satisfies DH₅, then: $\tau_{\underline{\delta}} = \{ \underline{V} \in D(X) : \underline{\delta} \ (\underline{V}, \ \underline{V}^c) = 1 \}$ $= \{ \underline{V} \in D(X) : \underline{V} \ \overline{Q} \ \overline{\underline{V}^c} \}.$

$$= \{ \underline{V} \in D(X) : \underline{V} \subseteq \underline{V}^c = \underline{V}^o \}$$
$$= \{ \underline{V} \in D(X) : \underline{V} \in \tau \} = \tau.$$

References:

- 1- M. Abdelhakem, Some Extended Forms of Fuzzy Topological Spaces via Ideals, Ph. D. thesis in Math., Fac. of Sci., Helwan Univ., Egypt (2011).
- 2- R. Engelking, General topology, Warszawa (1977).
- E. Hayashi, on some properties of proximity, J. Math. Soc. Japan., 16 (4) (1964).
- 4- A. Kandil, O. A. E. Tantawy and M. Abdelhakem, Flou Topological Spaces via Flou Ideals, Int. J. App. Math., Vol. 23, No 5 (2010) 837-885.
- 5- A. Knadil, O. Tantawy and K. Barakat, Fuzzy Paraproximity Spaces, Nat. Math. and Comput. Sci., Vol. 4, No. 1, (2008) 13-22.
- 6- A. Kandil, O. A. E. Tantawy and M. Wafaie, Flou separation axioms, J. Egypt. Math. and Phys. Soc., accepted (2010).
- 7- A. Kandil, O. A. E. Tantawy and M. Wafaie, On flou (INTUITIONISTIC) compact space, J. Fuzzy Math., Vol. 17, No. 2, (2009), 275-294.
- 8- A. Kandil, O. A. E. Tantawy and M. Wafaie, On flou (INTUITIONISTIC) topological spaces, J. Fuzzy Math., Vol.15, No 2, 2007.
- 9- E. E. Kerre, "fuzzy sets and approximate reasoning", Lectures notes, University of Gent Belgium (1988).