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Abstract: Using the second law of thermodynamics, we examine the macroscopic equations for

mass, momentum, energy and entropy for a biphasic system whose interface has thermodynamic

properties. This system is made up of mesoscopic particles and a fluid, including mass exchange

and different phase temperatures. By exploiting the entropy inequality in terms of Coleman and

Noll’s method we obtain nonequilibrium and equilibrium results. We show how the solid phase

stress tensor depends on the solid phase pressure, the Terzaghi stress, the hydration stress and the

stress contributed by the interface properties, which is similar to the Terzaghi stress. We determine

the heat fluxes. We further linearize the non-equilibrium parts of their constitutive forms in terms

of heat conduction, fluid viscosity and viscoelasticity about the equilibrium. Finally we obtain

expressions of the total stress and the total heat flux for a particle.
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1 Introduction

The description of physical processes which oc-

cur in multi-phase systems has been a topic of

practical as well as theoretical interest for many

years in subsurface hydrology, waste contain-

ment, enhanced recovery of petroleum, aquifer

remediation, agriculture and seismic phenom-

ena in geological formation. Porous materials

consisting of a swelling solid matrix with fluid-

filled pores are ubiquitous. Some examples are

food stuffs, drugs, cartilage, plant seeds, carbo-

hydrates, proteins, clay soils and biotissue (see

Almeida and Spilker (1998), Singh (2002), Singh

et al. (2003), (2004) and Weinstein (2006)).

Swelling clays (see Loret et al. (2002)), especially

Montmorillonites, play a prominent role in sev-

eral natural and industrial domains, such as soil

science, hydrogeology and catalysis, engineering

barrier systems for nuclear waste repository and

municipal waste disposals sites.

During the past few decades, significant progress

has been made in developing general theories

describing thermodynamic processes in general

multi-phase systems and in porous media (see

Bennethum and Cushman (1996b), Gray and

Hassanizadeh (1998) and Gray (2002)). Ex-

amples of these, are the swelling (see Almeida

and Spilker (1998), Bennethum and Cush-

man (1996a)) and non-swelling systems (see

Hassanizadeh and Gray (1980), (1990), Has-
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sanizadeh (1987a, b)).

The modeling framework which we use is the hy-

brid mixture theory (HMT). This theory consists

of averaging (see Hassanizadeh and Gray (1979a,

b)) the microscopic field equations (conservation

of mass, conservation of momentum, conserva-

tion of energy and balance of entropy) for each

phase in order to obtain macroscopic field equa-

tion. At this point the medium is viewed as mix-

ture of phases, that is, each phase has clearly de-

fined properties (densities, stress, etc.) at every

point in space and time. The HMT approach

was pioneered by Gray and Hassanizadeh, in a

series of papers (1979a, b), (1980), (1990) and

(1993). From 1979 to the present, HMT has been

successfully used to model swelling and shrink-

ing behaviour of gels, food stuffs, and collodial

systems where phase interactions play an impor-

tant role in the mesoscopic and macroscopic be-

haviour (see Bennethum and Cushman (1996)

and Bennethum (2007)). In Singh (2002), Singh

et al. (2003), Singh et al. (2004a, b), We-

instein (2006) and Weinstein and Bennethum

(2006), models were developed in which the solid

itself was assumed to be viscoelastic but the

interface was not assumed to have thermody-

namic properties. Gray and Miller (2005a, b)

and (2006) use a different modeling approach,

namely the thermodynamically constrained av-

eraging theory, where they thermodynamically

constrain the microscale entropy inequality be-

fore averaging to macroscale.

The purpose of the present research is to develop

a constitutive theory, for the total Cauchy stress

tensor and the total heat flux in a system under

the following assumptions:

(i) the system is biphasic, has mass exchange

and different temperature.

(ii) the solid matrix is viscoelastic and the fluid

is viscous.

(iii) the interface has full thermodynamic prop-

erties,

2 Macroscale equations

Conservation of mass

We consider a viscoelastic solid matrix s, a vis-

cous fluid f , an interface, denoted by a super-

script or subscript sf or fs, which has thermo-

dynamic properties and a system which has mass

exchange. The macroscopic balanced equations

on which this study is based result from an aver-

aging process of the mesoscale equations of mass,

momentum, energy and entropy, on a represen-

tative elementary volume, for each phase and

the interface. Details of this averaging process

are not included here, but can be obtained from

several works of Gray and Hassanizadeh (1989),

Hassanizadeh and Gray (1979) and other au-

thors. From Gray and Hassanizadeh (1998), we

recall the following macroscale balance equations

for both the bulk phases and the interfaces.

The bulk phase equations

Dα(εαρ
α)

Dt
+ εαρ

α(5 · vα) =

êαsf , α = f, s, (1)

where εα is the volume fraction of the α-phase,

ρα is the intrinsic mass density, vα is the ve-

locity of the α-phase and êαsf is the exchange of

mass from the only sf -interface to the α-phase.

Furthermore, we observe that the two volume

fractions satisfy the identity εs + εf = 1.
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The interface equation

Dfs(εfsρ
fs)

Dt
+ εfsρ

fs(5 · vfs) =

−êsfs − ê
f
fs, (2)

where εsf is the specific interfacial area of the

sf -interface, ρsf is the mass per unit area of

the sf -interface and vsf is the velocity of the

sf -interface. Note that since there is only one

interface, the superscripts or subscripts sf , fs,

refer to the same object.

Conservation of linear momentum

The bulk phase equations

εαρ
αD

αvα

Dt
−5 · (εαtα)− εαραgα =

T̂α
sf α = f, s. (3)

Here tα is the α-phase Cauchy stress tensor, gα

is the α-phase external supply of momentum and

T̂α
sf is the exchange of momentum from the in-

terface to the α-phase.

The interface equation

εfsρ
fsD

fsvfs

Dt
−5 · (εfstfs)− εfsρfsgfs =

−
∑
α=s,f

(T̂α
sf + êαsfv

α,sf ), (4)

where tsf is the interface stress tensor, gsf is

the interface external supply of momentum, the

product êαsfv
α,sf is the exchange of momentum

between the α-phase and the interface due to the

exchange of mass and vα,sf = vα−vsf is velocity

of the α-phase relative to that of the interface.

Angular Momentum

Due to the nonpolarity assumption which we

adopt in this study, we have the following sym-

metric stress tensors.

For the bulk phase, we have

tα = (tα)T (5)

and for the interface, we have

tαβ = (tαβ)T . (6)

where the superscript T , refers to the transpose.

Conservation of energy

The bulk phase equations

εαρ
αD

αEα

Dt
− εαtα : 5vα −5 · (εαqα)

−εαραhα = Q̂αsf , (7)

where Eα is the α-phase macroscopic internal

energy density function, qα is the α-phase heat

flux, hα is the α-phase external supply of en-

ergy and Q̂αsf is the exchange of internal energy

between the α-phase and the interface due to

mechanical interactions.

The interface equation

εfsρ
fsD

fsEfs

Dt
− εfstfs : 5vfs

−5 ·(εfsqfs)− εfsρfshfs

= −
∑
α=s,f

[
Q̂αsf+

T̂α
sf · vα,sf + êαsf (Eα,sf +

1

2
(vα,sf )2)

]
(8)

where the product êαsf (Eα,sf + 1
2 (vα,sf )2) is the

exchange of energy between the α-phase and the

interface due to exchange of mass, qsf is the in-

terface heat flux and hsf is the interface external

supply of energy. Note that Eα,sf = Eα − Esf

is the internal energy of α-phase relative to that

of the interface.

Balance of entropy

The bulk phase equations

εαρ
αD

αηα

Dt
−5 ·

(
εα

qα

θα

)
− εαρα

(
hα

θα

)
= Φ̂αsf + Λα, α = f, s, (9)
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where ηα is the α-phase entropy density func-

tion, ϕα = qα/θα is the α-phase entropy flux,

Φ̂αsf is the exchange of entropy between the α-

phase and the interface due to the mechanical

interactions and Λα is the α-phase net produc-

tion of entropy.

The interface equation

εfsρ
fsD

fsηfs

Dt
−5 ·

(
εfs

qsf

θsf

)
−εfsρfs

(
hsf

θsf

)
= −

∑
α=s,f

(Φ̂αfs + êαfsη
s,sf )

+Λsf , (10)

where ηsf is the interface internal entropy den-

sity function, ϕsf = qsf/θsf is the interface en-

tropy flux, the product êαfsη
s,sf is the exchange

of entropy between the α-phase and the interface

due to exchange of mass, ηs,sf = ηs − ηsf is the

entropy of the solid phase relative to that of the

interface and Λsf is the interface net production

of entropy.

3 Kinematics and the sec-

ond law of thermodynam-

ics

Let X = (X1, X2, X3) be the Lagrangian coor-

dinates of a typical particle at time t = 0 and

let this particle be carried to a point with Eule-

rian coordinates xs = (x1, x2, x3) at time t. This

motion is defined by the function

xk = F sk (XK , t), k = 1, 2, 3 and K = 1, 2, 3.

We assume that xs = x(X, t) possesses continu-

ous partial derivative with respect to their argu-

ments to whatever order needed. Let Fs denote

the deformation gradient; i.e

F skK =
∂xk
∂XK

or Fs = GRAD(xs)

where GRAD is the gradient with respect to La-

grangian coordinates. The Jacobian is given by

Js = det(Fs).

Since the motion is invertible, then the Jacobian

Js 6= 0. We also have the following expression

for the Jacobian, Hassanizadeh and Gray (1980)

and Gray (1983)

Js =
(εsρ

s)0
(εsρs)

. (11)

The factor (εsρ
s)0 in equation (11), is indepen-

dent of time and space. Using this equation and

the continuity equation (1) for the solid phase,

we obtain (see Gray (1983))

1

Js
DsJs

Dt
= I :

[
ds −

êssf
3εsρs

I

]
, (12)

where

dα =
1

2
(∇vα + (∇vα)T ) α = s, f

is the α-phase rate of deformation tensor. From

Eringen (1980) and Holzapfel (2000), we obtain

this identity relating the Jacobian and the defor-

mation tensor

∂Js

∂Fs
= Js(Fs)−1.

By using the chain rule, we have the following

material time derivative of the Jacobian

DsJs

Dt
=

∂Js

∂Fs
:
DsFs

Dt
= Js(Fs)−1 :

DsFs

Dt

. (13)

Substitution of equation (13) into (12), yields

DsFs

Dt
=

Fs

Js
DsJs

Dt

= Fs :

[
ds −

êssf
3εsρs

I

]
(14)
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The transpose of (14) is(
DsFs

Dt

)T
=

[
ds −

êssf
3εsρs

I

]
· (Fs)T (15)

Since the Lagrangian strain tensor is defined by

Es =
1

2
[(Fs)T · Fs − I],

then its time derivative is

DsEs

Dt
=

1

2

[
Ds(Fs)T

Dt
· Fs + (Fs)T · D

sFs

Dt

]
=

1

2

[(
DsFs

Dt

)T
· Fs + (Fs)T · D

sFs

Dt

]
. (16)

Furthermore, equations (14), (15) and (16) yield

this time derivative of the strain tensor

DsEs

Dt
= (Fs)T ·

(
ds −

êssf
3εsρs

I

)
· Fs

or the rate of deformation tensor has an extra

term involving the mass exchange and is given

by (see Weinstein (2006))

ds = (Fs)−T · Ės · (Fs)−1 +
êssf

3εsρs
I

. (17)

We define the right Cauchy-Green tensor as

Cs = (Fs)T · Fs

and hence the strain tensor is

Es =
1

2
(Cs − I).

Following Holzapfel (2000), we now consider a

multiplicative decomposition of the deformation

tensor Fs and Cs as follows:

Fs = (Js)1/3F̄s

and

Cs = (Js)2/3C̄s,

where (Js)1/3I and (Js)2/3I represent the vol-

umetric deformation, and F̄s and C̄s are the

modified deformation gradient and the modified

right Cauchy-Green tensor respectively. These

two modified tensors account for distortional de-

formation and are related by

C̄s = (F̄s)T · F̄s.

The equation (17) is now expressed in terms of

the modified deformation gradient, the modified

Cauchy-Green tensor and the Jacobian as fol-

lows:

ds = (Fs)−T · Ės · (Fs)−1 +
êssf

3εsρs
I

=
1

2
(Fs)−T · Ċs · (Fs)−1 +

êssf
3εsρs

I

=
1

3
(Js)−1JsI +

1

2
(F̄s)−T · ˙̄C

s
· (F̄s)−1

+
êssf

3εsρs
I. (18)

The inner product of ds with I, yields

I : ds =
J̇s

Js
+

1

2
((F̄s)−1 · (F̄s)−T ) : ˙̄C

s

+
êssf
εsρs

. (19)

Weinstein (2006), has a similar identity without

the last term.

Second law of thermodynamics

The conservation laws are supplemented with the

second law of thermodynamics which states that,

the rate of net production of entropy of a system

must be non-negative. Using the macroscopic

equations of the phases and the interface, we

then develop the entropy inequalities to express

this law. We start with the old entropy inequal-

ity which is expressed as follows:

Λold = −
∑
α=s,f

εαρ
α

θα

(
DαAα

Dt
+ ηα

Dαθα

Dt

)
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+
∑
α=s,f

εαtα

θα
: dα +

∑
α=s,f

εαqα

(θα)2
· 5θα

−εsfρ
sf

θsf

(
DsfAsf

Dt
+ ηsf

Dsfθsf

Dt

)
+
εsft

sf

θsf
: dsf +

εsfq
sf

(θsf )2
· 5θsf

− 1

θsf

∑
α=s,f

{
Q̂αsfθ

sf,α

θα
+ [T̂α

sfv
α,sf

+êαsf
(
Aα,sf − ηαθsf,α +

1

2
(vα,sf )2

)]}
≥ 0. (20)

where Aα and Asf are the Helmholtz free ener-

gies of the α-phase and the sf -interface respec-

tively and are defined as follows:

Aα = Eα − ηαθα α = s, f

Asf = Esf − ηsfθsf .

4 Choice of variables

Since we have more variables than the number

of equations and our system has particular as-

sumptions, we need to choose independent and

dependent variables. The independent variables

will have to capture our assumptions.

Independent variables

We assume the following indenedent variables:

εf , ∇εf , ε̇f ,
(m)
ε f , ∇

(m)
ε f , θs, θf , θsf , εsf , ρf ,

ρsf , df , dsf , vf,s, vsf,s, Js, C̄s, C̄
s
,

(n)

C̄
s
, for

m = 1, ..., p and n = 1, ..., q.

where εf is the porosity which accounts for lo-

cal volume changes; ∇εf , the porosity gradient

accounts for buoyancy effects; εsf is the amount

of sf -interface per unit volume;
(m)
ε f is the m-

th order material derivatives of εf in the direc-

tion of the solid phase velocity. These deriva-

tives from orders 1 to p, i.e. (m = 1, ..., p), cap-

ture the viscoelasticity of the solid (see Weinstein

(2006)). The higher order gradients of porosity

∇
(m)
ε f , account for flow due to moisture con-

tent. εsf is the areal density or specific surface

of the sf -interface. The temperature gradients,

∇θs,∇θf and ∇θsf account for the conduction

of thermal energy at intermediate rates of heat

transfer. The inclusion of fluid density gives rise

to pressure, pf ; ρsf is the surface excess mass

density of sf -interface. The rate of deformation

tensor df , incorporates the viscous nature of the

fluid. The relative velocities are vf,s, the ve-

locity of the fluid phase relative to that of solid

phase and vsf,s, velocity of the interface relative

to that of solid. The Jacobian Js, captures the

volumetric changes of the solid phase. The modi-

fied right Cauchy-Green tensor, C̄s, incorporates

changes due to shear and the n-th time rates of

change of the modified Cauchy-Green tensor
(n)

C̄
s
,

n = 1, ..., q accounts for the viscoelastic nature

of the material Weinstein (2006).

Dependent variables

The following variables As, Af , Asf , ts, tf , tsf ,

qs, qf , qsf , ηs, ηf , ηsf , êssf , ê
f
sf , T̂s

sf , T̂f
sf

Q̂ssf , Q̂fsf , are not directly measurable but are

determined as functions of directly measurable

(independent) variables, where As, Af , Asf

are the Helmholtz free energies, ts, tf , tsf

are the Cauchy stress tensors, qs, qf , qsf are

heat vectors, ηs, ηf , ηsf are entropy densi-

ties, êssf , êfsf are the mass exchange terms,

T̂s
sf , T̂f

sf are the momentum exchange terms,

Q̂ssf , Q̂fsf are the internal energy exchange

terms.

Postulate

As a departure from the principle of equipres-
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ence, we hypothesize that the Helmholtz free en-

ergies As, Af and Asf of the solid phase, fluid

phase and interface respectively, have the follow-

ing independent variables (see Weinstein (2006)):

As = As(εf ,
(m)
ε f , θ

s, Js, C̄
s
,
(n)

C̄
s
) (21)

Af = Af (εf ,
(m)
ε f , θ

f , ρf ,df , C̄s,
(n)

C̄s) (22)

Asf = Asf (εf ,
(m)
ε f , θ

sf , εsf , ρ
sf , C̄

s
,
(n)

C̄
s
)

m = 1, . . . , p, n = 1, . . . , q. (23)

Extended entropy inequality

Liu (1972) proposed the extension of the entropy

inequality by adding the products of Lagrange

multipliers with conservation equations. In the

present work we only use the conservation of

mass equation as demonstrated in Bennethum

and Cushman (1996),Singh (2002), Cushman

and Bennethum (2004) and Weintein (2006),

Λnew = Λold +
∑
α=s,f

λαMMα + λsfMM
sf

≥ 0. (24)

where

Mα =
1

θα

{
Dα(εαρ

α)

Dt
+ εαρ

αI : dα

−êαsf
}

= 0,

Msf =
1

θsf

{
Dsf (εsfρ

sf )

Dt
+ εsfρ

sfI : dsf

+êssf + êfsf

}
= 0.

The full expansion of the extended entropy in-

equality is presented in the appendix. We then

use Coleman and Noll (1963) method to exploit

this inequality, which leads to non-equilibrium

results.

5 Stress tensor and heat flux

results

Non-equilibrium results

Considering the extended entropy inequality

from the appendix, the coefficients of the follow-

ing variables, which are neither independent nor

dependent

J̇s, ρ̇f , ρ̇sf , dsf ,

must be zero. This results in the following non-

equilibrium results:

1

3
tr(ts) = ρsJs

∂As

∂Js
= −ps (25)

λsf = ρsf
∂Asf

∂ρsf
=
psf

ρsf
(26)

tsf = −ρsfλsf = −psfI (27)

Equation (25) tells us that physical pressure is

equal to thermodynamic pressure. Equation (27)

tells us that the interface Cauchy stress tensor is

given by interfacial surface tension.

Equilibrium results

By letting all the coefficients variables that are

neither independent nor dependent be zero, we

obtain the dissipative or residual entropy in-

equality. Results from this dissipative entropy

inequality at equilibrium are:

the fluid stress tensor is

tf = −(ρf )2
∂Af

∂ρf
I = −pfI. (28)

the solid stress tensor is

ts = −psI + 2ρs(F̄s) · ∂A
s

∂C̄
s · (F̄s)T

+2
εsfρ

sf

εs
(F̄s) · ∂A

sf

∂C̄
s · (F̄s)T
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+
2

3
ρs
∂As

∂C̄
s : C̄

s
+

2

3

εfρ
f

εs

∂Af

∂C̄
s : C̄

s

+
2

3

εsfρ
sf

εs

∂Asf

∂C̄
s : C̄

s
.

or

ts = −psI + t̄se +
εf
εs

t̄sh +
εsf
εs

t̄si (29)

where

t̄se = 2ρs
(

F̄s · ∂A
s

∂C̄
s · (F̄s)T −

1

3

∂As

∂C̄
s : C̄

s
)

t̄sh = 2ρf
(

F̄s · ∂A
f

∂C̄
s · (F̄s)T −

1

3

∂Af

∂C̄
s : C̄

s
)

t̄si = 2ρsf
(

F̄s · ∂A
sf

∂C̄
s · (F̄s)T

−1

3

∂Asf

∂C̄
s : C̄

s
)
.

The term t̄se is the effective stress and also re-

ferred to as Terzhagi’s stress in Weinstein (2006).

Hydration stress is given by t̄sh. The last term

of equation (29) is new and brought about by the

inclusion of the thermodynamic properties of the

interface. We notice that t̄si is directly propor-

tional to the areal density function of the inter-

face and also depends on the change in interface

free energy with respect to shear. Furthermore,

t̄se +
εf
εs

t̄sh +
εsf
εs

t̄si

forms the deviatoric part of the solid phase stress

tensor.

There is no heat flux at equilibrium and thus we

have

qα = qsf = 0 α = s, f.

Constitutive forms

If at equilibrium, we have a result A|e = B, then

away from equilibrium we will have A = B + C,

where C|e = 0. Note that C will depend on all

the chosen independent variables. We will refer

to A = B+C as a constitutive form. From equa-

tion (28), away from equilibrium the fluid stress

tensor becomes

tf = −pfI + τf , (30)

the solid stress tensor becomes

ts = −psI + t̄se +
εf
εs

t̄sh +
εsf
εs

t̄si + τs,

(31)

the heat fluxes for the phases become

qα = q̄α, α = s, f (32)

and for the interface, we have

qsf = q̄sf . (33)

The additional non-equilibrium terms in the con-

stitutive forms (30) and (31) are highly non-

linear.

6 Near equilibrium

We use Taylor’s theorem to linearize non-

equilibrium terms of constitutive forms about

the equilibrium. The linearization is done with

respect to heat conduction, fluid viscosity and

viscoelasticity of the solid.

For the fluid phase stress tensor the non-

equilibrium term becomes

τf = Hf · ∇θ + Df : df

(34)

For the solid phase stress tensor the non-

equilibrium term becomes

τs = Hs · ∇θ +

p∑
r=1

Esr (r)
εf

+

q∑
n=1

FsKsn :
(n)

C
s

(Fs)−1 (35)
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The heat fluxes for the fluid and the solid are

given respectively by

q̄f = −Mf : ∇θ + Nf : df . (36)

q̄s = −Ms : ∇θ + Ns : df +

p∑
l=1

Ssl
(l)
εf

+

q∑
n=1

Fs ·Wsn
(n)

C
s ·(Fs)−1. (37)

We note that the material coefficients in these

expressions, viz. Ssl is a first order tensor, Mα

is a second order tensor, Nα and Wsn are third

order tensors.

q̄sf = −Msf∇θ + Nsf : df . (38)

In this expression, the material coefficient Msf

is a second order tensor and Nsf is a third order

tensor.

In order to determine the exact nature of all

these material coefficients, we need to perform

experiments.

Remark: All the heat fluxes generalize Fourier’s

law of heat conduction.

Constitutive form near equilibrium

The expression of the fluid phase stress tensor

near equilibrium is

tf = −pI + Hf · ∇θ + Df : df . (39)

The expression of the solid phase stress tensor

near equilibrium is

ts = −psI + t̄se +
εf

(1− εf )
t̄sh

+
εsf

(1− εf )
tsi + Hs · ∇θ +

p∑
r=1

Esr (r)
ε f

+

q∑
n=1

Fs.Ksn :
(n)

C

s

.(Fs)−1 (40)

The expressions of the fluid and solid phase heat

fluxes near equilibrium are

qf = −Mf : ∇θ + Nf : df (41)

and

qs = −Ms : ∇θ + Ns : df +

p∑
l=1

Ssl
(l)
εf

+

q∑
n=1

Fs ·Wsn
(n)

C
s ·(Fs)−1. (42)

respectively.

Total stress and heat fluxes

First we have the total pressure given by

p = (1− εf )ps + εfp
f .

We then have the total stress tensor as

t = (1− εf )ts + εft
f

or

t = −pI + tse +
εf

(1− εf )
tsh

+
εsf

(1− εf )
tsi + Df : df

+[(1− εf )Hs + εfH
f ] · ∇θ

+

p∑
r=1

Esr (r)
εf +

q∑
n=1

Fs ·Ksn :
(n)

C

s

·(Fs)−1.

(43)

The total heat flux is

q = (1− εf )qs + εfq
f

or

q = −[(1− εf )Ms + εfM
f ] · ∇θ

+[(1− εf )Ns + εfN
f ] : df +

p∑
l=1

Ssl
(l)
εf

+

q∑
n=1

Fs ·Wsn :
(n)

C

s

·(Fs)−1. (44)
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Conclusion

Using macroscopic balance equation ( averaged

from mesoscale to macroscale), the hybrid mix-

ture theory method, Coleman and Noll method

and Liu’s Lagrange multiplier’s, we obtained the

interfacial tension as the only result which is

valid everywhere. All other results were deter-

mined near equilibrium by applying linear Tay-

lor expansion about equilibrium. These all have

the following dependencies

• From equation (27) the interfacial tension

tsf , depends on the interface thermody-

namic pressure only.

• From equation (43) the total particle stress

tensor t, depends on the porosity, the total

thermodynamic pressure, hydration forces,

effective stresses due to the solid phase and

the interphase, heat conduction, fluid vis-

cosity and the solid matrix viscoelasticity.

• From equation (44) the total particle heat

flux q depends on the porosity, fluid vis-

cosity, heat conductio and the solid matrix

viscoelasticity.
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Appendix
After appropriate substitutions of the old en-

tropy inequality, the Lagrange multipliers, the

conservation of mass equations and simplifica-

tion, we obtain the following expression of the

extended entropy inequality (24):

Λnew = Λold + λsMs + λfMf + λsfMsf ≥ 0

= −
(
εsρ

s

θs
∂As

∂εf
+
εfρ

f

θf
∂Af

∂εf

+
εsfρ

sf

θsf
∂Asf

∂εf
− ρf

θf
λf
)
Dsεf
Dt

12



−
p−1∑
m=1

εsρs
θs

∂As

∂
(m)
ε f

+
εfρ

f

θf
∂Af

∂
(m)
ε f

+
εsfρ

sf

θsf
∂Asf

∂
(m)
ε f

 (m+1)
ε f

−

[
εsρ

s

θs
∂As

∂ε
(p)
f

+
εfρ

f

θf
∂Af

∂ε
(p)
f

+
εsfρ

sf

θsf
∂Asf

∂ε
(p)
f

]
ε
(p+1)
f

−
[
εsρ

s

θs
∂As

∂Js
− 1

3

εs
θsJs

tr(ts)

]
DsJs

Dt

−
(
εsρ

s

θs
∂As

∂C
s +

εfρ
f

θf
∂Af

∂C̄s
+
εsfρ

sf

θsf
∂Asf

∂C
s

−1

2
(F̄s)−1 · εst

s

θs
· (F̄s)−T

− 1

2

εsρ
s

θs
λs · (F̄s)−1.(F̄s)−T

)
:
DsC̄

s

Dt

−
[
εfρ

f

θf
∂Af

∂ρf
− εfλ

f

θf

]
Dsρf

Dt

−
[
εsfρ

sf

θsf
∂Asf

∂εsf
− ρsfλsf

θsf

]
Dsεsf
Dt

−
[
εsfρ

sf

θsf
∂Asf

∂ρsf
− εsfλ

sf

θsf

]
Dsρsf

Dt

−
q−1∑
n=1

εsρs
θs

∂As

∂
(n)

C̄
s

+
εfρ

f

θf
∂Af

∂
(n)

C̄
s

+
εsfρ

sf

θsf
∂Asf

∂
(n)

C̄
s

 :
Ds

(n+1)

C̄
s

Dt

−

εsρs
θs

∂As

∂
(q)

C̄
s

+
εfρ

f

θf
∂Af

∂
(q)

C̄
s

+
εsfρ

sf

θsf
∂Asf

∂
(q)

C̄
s

 :
Ds

(q)

C̄
s

Dt

−
[
εsρ

s

θs

(
∂As

∂θs
+ ηs

)]
Dsθs

Dt

−
[
εfρ

f

θf
(
∂Af

∂θf
+ ηf )

]
Dsθf

Dt

−
[
εsfρ

sf

θsf

(
∂Asf

∂θsf
+ ηsf

)]
Dsθsf

Dt

−
[
εfρ

f

θf
∂Af

∂df

]
:
Dfdf

Dt

−

εfρf
θf

∂Af

∂εf
∇εf +

εfρ
f

θf

p∑
m=1

∂Af

∂
(m)
εf

∇
(m)
ε f

+
εfρ

f

θf

(
∂Af

∂θf
+ ηf

)
∇θf +

εfρ
f

θf
∂Af

∂C̄s
: ∇C̄s

+
εfρ

f

θf

q∑
n=1

∂Af

∂
(n)

C
s

: ∇
(n)

C
s

+
εfρ

f

θf
∂Af

∂ρf
∇ρf

−εfλ
f

θf
∇ρf − ρfλf

θf
∇εf +

T̂f
sf

θf

]
vf,s

−

εsfρsf
θsf

∂Asf

∂εf
∇εf +

εsfρ
sf

θsf

p∑
m=1

∂Asf

∂
(m)
εf

∇
(m)
ε f

+
εsfρ

sf

θsf
∂Asf

∂εsf
∇εsf −

ρsfλsf

θsf
∇εsf

+
εsfρ

sf

θsf
∂Asf

∂ρsf
∇ρsf − εsfλ

sf

θsf
∇ρsf

+
εsfρ

sf

θsf

(
∂Asf

∂θsf
+ ηsf

)
∇θsf

+
εsfρ

sf

θsf
∂Asf

∂C̄
s : ∇C̄

s

+
εsfρ

sf

θsf

q∑
n=0

∂Asf

∂
(n)

C̄s

: ∇
(n)

C̄
s

− 1

θsf

(
T̂s
sf + T̂f

sf

))
vsf,s

+
1

(θs)2
εsq

s · ∇θs +

(
εft

f

θf
+
εfρ

fλf

θf
I

)
: df

+
1

(θf )2
εfq

f · ∇θf +

[
εsft

sf

θsf
+
εsfρ

sfλsf

θsf
I

]
: dsf

+
1

(θsf )2
εsfq

sf · ∇θsf

− 1

θsf

∑
α=s,f

(
Q̂αsf
θα
− êαsfηα

)
θsf,α

−
êssf
θsf

(
As,sf − 1

3

θsf

θsρs
tr(ts) + λsf +

1

2
(vs,sf )2

)
−
êfsf
θsf

(
Af,sf +

λfθsf

θf
+ λsf +

1

2
(vf,sf )

2

)
≥ 0.
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Nomenclature
Aα Helmholtz free energy function

for the α-phase.

Asf Helmholtz free energy function

for the sf -interface.

bα external supply of entropy to

the α-phase.

bαβ external supply of entropy to

the αβ-interface.

Cs Right Cauchy-Green tensor.

C̄s modified right Cauchy-Green

tensor.

dα strain rate tensor for the α-phase.

Es Lagrangian strain tensor.

Eα internal energy of the α-phase

per mass of α phase.

Eαβ internal energy of the

αβ-interface per mass of

αβ-interface.

êααβ rate of transfer of mass from

αβ- interface to the α phase.

Fs deformation gradient of the solid

phase.

F̄s modified deformation gradient of

the solid phase.

Gα Gibbs free energy function.

gα external supply of momentum to

the α-phase.

gαβ external supply of momentum to

the αβ-interface.

hα external supply of energy to the

α-phase .

hαβ external supply of energy to the

αβ-interface.

Js Jacobian of the solid phase.

Q̂ααβ energy transferred to the

α-phase from the αβ interface.

qα heat conduction vector for the

α-phase.

qαβ heat conduction vector for the

αβ-interface.

T̂α
αβ force exerted on the α phase by

the αβ-interface.

tα stress tensor for the α phase.

tαβ stress tensor for the αβ-interface.

vα velocity of the α-phase.

vαβ velocity of the αβ-interface.

vα,αβ velocity of the α-phase relative

to the velocity of the αβ-interface,

vα − vαβ .

x position vector of a solid phase

particle in the deformed configuration.

X position vector of a solid phase

particle in the undeformed configuration.

ηα entropy of the α-phase.

ηαβ entropy of the αβ interface.

εα volume fraction of the α-phase.

εαβ specific interfacial area of

αβ-interface (area per unit of system volume).

ρα density of α-phase, mass of

α-phase per volume of α-phase.

ραβ density of αβ-interface, mass of

αβ-interface per area of αβ interface.

ϕα entropy conduction vector of the

α-phase.

ϕαβ entropy conduction vector of the

αβ-interface.

ρα volumetric mass density of the α-phase.

ρα volumetric mass density of the

interface.
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Φαsf body supply of of entropy to

the α-phase from the sf -interface.

Λα rate of net production of

entropy to the α-phase.

Λsf rate of net production of

entropy to the interface.

Mα The α-phase continuity equation.

Pα The α-phase momentum equation.

Eα The α-phase energy equation.

Msf The interface continuity equation.

Psf The interface momentum equation.

Esf The interface energy equation.
(m)
εf mth order material derivative of

the εf with respect to the macroscale

solid phase velocity.
(n)

C̄s nth order material derivative of

the C̄s with respect to the macroscale

solid phase velocity.

Differential operators used

Dα/Dt material derivative following the

motion in the α-phase, ∂/∂t+ vα · 5.

Dαβ/Dt material derivative following the

motion in the αβ-interface, ∂/∂t+ vαβ · 5.

5 gradient operator with respect to

spatial coordinates.

Superscripts and subscripts

s solid phase.

f fluid phase.

sf solid-fluid interface.

T transpose of a tensor.

15


	Untitled

