The hepatoprotective effect of dimethyl 4,4- dimethoxy 5,6,5,6dimethylene dioxy-biphenyl- dicarboxylate (D.D.B.) on aflatoxin B1 induced liver injury

Atef A. Hassan* and W.M. Tawakkol **Abdel Azeem El Barawy***

*Mycology Dept. and ***Chemistry Dept. (Pharmacology Unit), Animal Health Research Institute, Dokki ** Faculty of Pharmacy, Cairo University.

<u>elbarawy4@yahoo.com</u>

Abstract

Seventy five samples of frozen meat, raw milk and poultry feed (25 samples each), were examined mycologically and for detection of aflatoxin B₁ (AFB₁). The results revealed that the isolated fungi represented 6 genera of moulds. The most prevalent fungi in these samples was the genus aspergillus (60%, 60% and 76%) with mean of count of $(1.6 \times 10^2 \pm 0.1,$ $6.0 \times 10 \pm 0.23$ and $3 \times 10^2 \pm 1.0$), respectively, which was at the top of all isolated fungi . However, *A. flavus* was isolated form all kind of samples and that which isolated from feed produced aflatoxin B₁ with mean level of (60 ± 0.1 ppb) followed by that isolated from frozen meat (9.5 ± 0.71 ppb), but those isolated from milk had the lowest AFB₁ level (1.0 ± 0.1 ppb). The effect of dimethyl 4, 4- dimethoxy 5, 6, 5, 6- dimethylene dioxybiphenyl 2, 2- dicarboxylate (D.D.B.) in degradation of AF was evaluated by intraperitoneal injection of 30 rats with 1.5 ppm of AFB₁ to evaluate their effect on haematological, biochemical and protein electrophoretic patterns of aflatocicated rats. The obtained results indicates an improvement in the haematological picture (Hb, RBCs and PCV) together with WBCs and differential leucocytic count of the treated rats compared with non treated ones. Also, biochemical analysis revealed significant changes in urea and creatinine levels; AST and ALT activities; total protein and protein electrophoretic patterns of treated rats. The administrated of DDB effectively improved haematological alterations and prevent serum biochemical changes, ameliorated, the toxic effect of aflatoxin B1 and had hepatoprotective effect on AFB1 induced liver toxicity. [Life Science Journal 2010;7(3):148-153]. (ISSN: 1097-8135).

Keywords: frozen meat; raw milk; poultry feed; aflatoxin B₁ (AFB₁); genus aspergillus; toxicity

INTRODUCTION

The increased population in the world requires a parallel raise in the production of food. Some countries as Egypt had to import many food and feeds. The recent researches reported that the majority of this food may carry the dangerous factors for human and animal health. Fungal contaminations and their toxins represents the most significant contaminant of these food (Magnoli et al., 1999). Aflatoxins are a group of secondary metabolites produced by A. flavus and A. parasiticus in food and feed commodities (Oguz, 1997). The consumption of food contaminated with mould and their toxins induced food poisoning, hemorrhages, hepatotoxicity, nephrotoxicity, neurotoxicity, dermatitis, carcinogenic, hormonal and immunosppression effects (Hassan et al., 2004 and 2005). Therefore, the degradation of such fungi and their toxins become critical demand.

It was investigated that aflatoxin B1 is the most potent one of aflatoxins (Hamdy et al., 1995). The dimethyl diphenyl bicarboxylate (DDB) could directly protect hepotocyte DNA from oxidative damage and inhibit TNF- alpha mRNA expression in liver tissue which resulted in prevention of liver damage (Gao et al., 2005). Also Park et al. (2005) demonstrated that DDB exerted protection of liver from chemical- induced injury potentiated by the condition of glutathione (GSH) deficiency and has additional advantages in lowering the plasma lipids.

Therefore, this study was undertaken to screen poultry feeds, frozen meal and raw milk for A. flavus and

Aflatoxin B_1 production by isolated A. *flavus* and to evaluate the effect of DDB in recovering aflatoxicosis.

MATERIALS AND METHODS

2.1. Material:

2.1.1. Samples: 75 samples of frozen meat, raw milk and poultry feed (25 of each) were collected from markets at Cairo Governorate and poultry farms for investigation of fungal contamination and detection of aflatoxin contamination.

2.1.2. Aflatoxin standard: standard of aflatoxins B₁, was purchased from sigma chemical company (USA).

2.1.3. Animals: Thirty apparently healthy albino rats weighted (100-120 g) were housed under hygienic conventional conditions in suspended stainless steel cages. Prior to experiment rats fed on healthy basal diet free from any cause of disease. Drinking water was supplied in glass bottles, cleaned three times a week.

2.1.4. Dimethyl diphenyl bicarboxylate (DDB): It was imported by Al-Ahram Pharmaceutical and Medical Equipment Company, Egypt.

2.1.5. Chemicals and reagentsfor usingpolyacrylamide gel electrophoresis :They includedacrylamide,bisacrlamide,2,2,2,2-Tetramethylethylendiamine(TEMED),B-mercaptoethanol, 1.5 M Tris-cl pH8,8,10%SDS(sodium dodecyl sulphate), initiator(10% ammoniumpersulphate), buffers, comassie stain and destaining bymethanolandsaceticacid solutions,andprotein

molecular weight marker. These chemicals were purchased from sigma chemical company, USA.

2.2. Methods:

2.2.1. Isolation and identification of moulds: each feed samples was subjected for isolation and identification of fungi as recommended by (**Conner** *et al.*, 1992).

2.2.2. Production and estimation of aflatoxins (Gabal *et al.*, 1994).

2.2.2.1. Cultivation and extraction of aflatoxins:

Isolated strains of *Aspergillus flavus* were inoculated into flasks conaining 50 ml of sterile yeast extract solution 2% containing 20% sucrose (YES).

Inoculated flasks were incubated at 25° C for 7-10 days . At the end of the incubation period, 50 ml chloroform were added and the mixture was thoroughly mixed for one minute in ultraurax apparatus, then centrifuged (3000 r.p.m.) for 10 minutes after which the chloroform layer decanted. The chloroform extraction was repeated for one more time.

One ml ethanol, 3 gm copper – (III)-hydroxide carbonate and 5 gm anhydrous sodium sulphate were added to the chloroform extract, mixed well and filtered.

The filtrate was then evaporated in a rotatory vacuum evaporator, the residue cooled and resuspended in exactly 5 ml of colorophorm.

2.2.2.2. Thin layer Chromatographic analysis of choloroform extract (Scott, 1990);

The concentrated extract was spotted onto activated thin layer chromatography plates coated with silica gel of 0.25 mm thickness. Standard solution of aflatoxins B_1 , B_2 , G_1 and G_2 were spotted on the plate using 10-20 μ l capacity pipette. The spotes were air dried and the TLC plates out in the developing tank containing the developing solvent system (5Toluene :4 ethyl acetate :1 of 90% formic acid (V/V/V) or (chloroform: hexan: petroleum ether: benzene: acetone 6:1:1:1:1).

When the solvent travels about 12 cm front, the plates were removed from the tank, air dried and inspected under a ultraviolet light lamp for examining the tested and standerd spots and determining the rate of flow (R_f^1 of the toxin) then the results recorded

Aflatoxin was calculated by the following equation or formula.

$$\mu g/kg = ----- Z x W$$

$$\begin{split} S &= \mu l \text{ of a flatoxin standard equal to unknown.} \\ Y &= Concentration of a flatoxin standard in \mu g/ml \\ V &= \mu l \text{ of final dilution of sample extract} \end{split}$$

- http://www.sciencepub.net
- $Z = \mu l$ of sample extract giving a spot fluorescent intensity equal to the standard (S)
- W = Mass of sample, represented by the final extract in gm. Applied to Column =(100 g x filtrate volume)/ 200.

2.2.3. Experimental design: Thirty rats were divided into 3 equal groups. Rats of the first group were given normal feed (free from mycotoxins and without any treatment) and kept as a negative control. Rats of the other two groups were given single dose of AFB_1 intraperitonealy at the rate of 1.5 ppm (**Bao, 2002**). Then on the second day rats of the third were dosed orally by 300 mg DDB for 3 weeks (**Bao, 2002**), while those of the second group were left without any treatment to kept as positive control.

2.2.4. Haematological and biochemical investigations:

At the end of the experimental period, two blood samples were collected from each rat. The first portion was collected in small labeled dry and clean vials containing Na EDTA (1 mg/ 1ml fresh blood, Schalm et al., 1975) as anticoagulant for haematological study according to routine methods described by Jain (1986). While, the second portion was taken without anticoagulant in centrifuge tube, allowed to clot, then centrifuged at 3000 rpm for 10 minutes for separation of serum which used to assay the biochemical parameters. Serum analysis included estimation of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities according to Reitman and Frankel, (1957), serum urea according to Wybenga et al. (1971), serum creatinine level according to Henry (1974) and total serum protein as described by Pesce and Kaplan (1978).

2.2.5. Estimation of molecular weight of different plasma protein by using SDS-polyacrylamide gel electrophoresis as described by Laemmli (1970): After the separating gel was prepared and pored into wells rinse with distilled water and invert to drain the wells. 25 ul of serum sample underlay in each well and the upper buffer chamber putted in place . Then , contact sandwiches to the bottom of the upper chamber .The upper buffer chamber was placed on the heat exchanger in the lower buffer chamber . Fill the lower buffer chamber with tank buffer until the sandwiches are immersed in buffer and add a drop of 0.1 % phenol red to the upper buffer chamber (tracking dye). Alternatively, add the dye directly to the sample after it has been heattreated. The upper buffer chamber was filled with tank buffer .After placing the lid on unit, the power supply was connected(PS 500XT). The cathode should be connected to the upper buffer chamber . Turn the power supply on and adjust the current 2 m. Amp. Per sample for 90 minutes, the voltage should start at about 70-80 V, but will increase during the run. When the dye reaches the bottom, turn the power supply off and disconnect the power cables. The gels sandwiches placed in stain and gently shake the gels for one hour on the PR 70 red rotor. Then put it in destaining solution and shake for one hour. Quantitation of different protein molecular weight were made by using densitometer G 700 (Bio-Rad, USA).

2.2.6. Estimation of isoelectric focusing of plasma protein by using polyacrylamide gel electrophoresis as described by Oo OFarrell (1975):

The isoelectric focusing is carried out with anode electrode solution (0.01 M 3PO4) and cathode electrode solution (0.02 M Na OH) which are laid along the long length of each side of the gel and a potential difference applied. Under the effect of this potential difference, the ampholytes from a PH gradient between the anode and cathode, (the gels are pre-run at 200 V for 15 minutes at 22 °C and 400 V for 30 min at 22 °C). Depending on which point on the PH gradient the sample has been loaded, protein that initially at a PH region below their isoelectric point will be positively charged and will initially migrate towards the cathode. As they proceed, however, the surrounding PH will be steadily increasing and therefore the positive charge on the protein will decrease correspondingly until eventually the protein arrives at a point zwitterions form with no net charge. Likewise substances that are initially at PH regions above their isoelectric points will be negatively charged and will migrate towards the anode until they reach their isoelectric point and become stationary. The gels are fixed in 50% v/v ethanol, 7% v/v acetic acid for 2 hours. The fixation gel must be done before staining because the ampholytes will stain too, giving a totally blue gel, the fixation will precipitate the proteins in gel and allows the much smaller ampholytes to be washed out. After staining and destaining of gels, the distance of each band from one electrode is measured and graph of distance for each protein is determined using densitometer G 700 (Bio-Rad, USA).

2.3. Statistical analysis: The obtained date were computerized and analyzed for significance. Calculation of standard error and variance according to (SPSS 14, 2006).

RESULTS AND DISCUSSION

The current data in table (1) showed isolation of 6 genera of mould and one yeast species. The most prevalent fungi in frozen meat, raw milk and poultry feed was the genus aspergillus (60%, 60% and 76%) with mean of count of $(1.6 \times 10^2 \pm 0.1, 6.0 \times 10 \pm 0.23 \text{ and } 3 \times 10^2 \pm 1.0)$, respectively, which was at the top of all isolated fungi. Other genera of mould were recovered in different frequency. Whereas, the yeasts were isolated in higher frequency (44% with the mean count of (3.5 x 10 ± 0.1 in frozen meat) (40% with the mean count of 1.1 x $10^2 \pm 0.25$ in raw milk) and (20% with mean count of 4 x $10^2 \pm 0.3$) in poultry feed.

Aspergillus flavus was the most frequent mould of aspergillus species isolated from all tested samples of frozen meat, milk and poultry feed (44% with mean count of 1.6 x 10 \pm 0.3), (60% with mean count of 3.3 x 10 \pm 0.3) and (60% with mean count of 1.0 x 10² \pm 0.2) respectively. The similar results were previously reported by Hassan *et al.* (1997); Wafia and Hassan (2000); Hassan and Hamad (2001); Hassan *et al.*, (2002, 2004 and 2005) and El- Ahl *et al.* (2006).

Other members of aspergillus were isolated in various frequency (Table, 2). The isolation of large

numbers of fungi in present samples may be due to their exposure to environmental factors as high temperatures and humidity during harvesting, transportation, handling, processing and/or storage which help in all ways to fungal pollution by different genera of fungi. Significant levels of aflatoxin was produced by *A. flavus* isolated from present samples (Table, 3), where, the maximum levels of toxin was obtained from *A. flavus* isolated from poultry feed (80% of isolates produced mean level of 60 \pm 0.1 ppb) followed by those isolated from frozen meat (50% with the mean level of 9.5 \pm 0.7 ppb). However, *A. flavus* recovered from raw milk showed the lowest rat of toxin production (30%) with mean level of (1.0 \pm 0.1 ppb).

Results of haematological study as presented in table (4) showed significant reduction in haemoglobin level (Hb), red blood cells (RBCs) and Packed cell value (PCV) of rats given aflatoxin only (group 2) indicating presence of anaemia. This anaemia may be due to the direct effect of the toxin on the haemobiotic system. Similar findings were reported by **Hassan and Mogda** (2003) and Salem *et al.* (2007).

The treatment with DDB significantly improved the function of this system by degradation of aflatoxin and It improved concentration of Hb, RBCs count and haematocrit value(**Abdel-Hameid** (2007).

Results presented in table (5) showed significant leucocytosis in groups 2, 3 compared to group 1, this recorded leucocytosis may be attributed to the toxic effect of AFB₁ on haemobiotic tissue as recorded by Parent-Massin (2004). It could be noticed from the tabulated results in table (5), that treatment with DDB improved the total leucocytic count compared to the aflatoxicated rats toward the control -ve group (group, 1). The results in table (5) revealed a significant increase of segmented and staff cells percent while lymphocytes, monocyte, eosinophils and basophils were lowed in group 2 which received AFB₁ only without any treatment compared to the control -ve group. On the other hand treatment with DDB induced an improvement in segmented, lymphocytes, monocyte, basophils and staff percent compared to aflatoxicated group toward the control - ve group.

Concerning the effect of AFB₁ alone on the kidney and liver functions of rats, a significant elevation in levels of urea, creatinine, AST and ALT activity were observed. Aravind et al. (2003) reported that AFB1 caused an increase in AST and ALT activities, which indicated the liver damage. Also, Bilgic and Yebyldere (1998) reported that AFB₁ cause petecial haemorrhages in the kidney and liver due to the animals feeding on diets containing AFB1. This findings was in agreement with results obtained by Celyk et al. (1999) and Eraslan et al. (2006). The treatment with DDB leads to a decrease in AST and ALT activities due to protection of treated rats against AFB₁ hepatotoxicity by increasing the detoxifying metabolism of AFB₁ in the liver as recorded by Lu and Li (2002). Similar results were reported by Gao et al. (2005) recording that DDB significantly inhibited hepatocyte nuclear DNA fragmentation and prevented the direct DNA damage, these results suggest that DDB could directly protect hepatocyte DNA from oxidative damage and inhibit tumor necrosis factor (TNF)- alpha

mRNA expression in liver tissue, which resulted in prevention of liver damage. Similarly, Park et al. (2005); Sun and Lu (2006) and Jin et al. (2007) recorded that DDB effectively prevented increases in plasma transferases. Abdel- Salam et al. (2007) and Abdel-Hameid (2007) reported that DDB has significantly prevented the occurrence of liver damage. On the other hand this findings disagreed with that reported by Kin et al. (1999) and Nan et al. (2000) who recorded that DDB did not improve AST and ALT activities caused by hepatotoxicity. Results shown in table (7) indicated that the effect of DDB on the total protein and its electrophoretic pattern in aflatoxicated rats showed a significant improvement in their serum levels. This elevation may be attributed to the improvement in hepatocytes as reported by Lu and Li (2002) leading to enhancement of protein synthesis which was impaired by aflatoxicosis. The reported impairment of protein

synthesis due to aflatoxicosis was in agreement with that reported by **Raju and Devegawda (2000);** Aravind *et al.* (2003); Don and Kaysen (2004) and Eraslan *et al.* (2006).

The presence of fungi and their toxins in feed and food reflected unhygienic measure during cultivation, irrigation harvesting transportation, handling, storage and processing of feed and food. Therefore, frequent testing programs of food during different steps of production must be monitored before given to animals or human for consumption. The fungal inhibitors may be added if the level of contamination over the limited level. Therefore, continuous investigations for finding new safe methods for controlling the growth of fungi and mycotoxins production to keep the human and animals consumer are critical demand. All ways for increasing the quality of human health and animals wealth.

Table ((1)	M١	coflora	of	frozen	meat	raw	milk	and	poultry	v food
I doite (1.	TAT	conora	O1	nozen	mout,	10,00	mm	unu	pound	, 100u.

Fungal genera	Prevalence of fungal genera									
		Frozen meat (25)				milk (25)	Poultry feed (25)			
	No. of	%	Mean of count ± SE	No. of	%	Mean of count \pm SE	No. of	%	Mean of count ±	
	+ve			+ve			+ve		SE	
Total fungi	20/25	80	$3.8 \ge 10^2 \pm 2.0 \ge 10$	17/25	75	$6.1 \ge 10 \pm 0.2$	22/25	88	$3 \ge 10^2 \pm 1.0 \ge 10$	
Aspergillus sp.	15/25	60	$1.6 \ge 10 \pm 0.1 \ge 10$	15/25	60	$6.0 \ge 10 \pm 0.23$	19/25	76	$3 \ge 10^2 \pm 1.0 \ge 10$	
Penicillium sp.	8/25	32	$1.1 \ge 10 \pm 0.3 \ge 10$	12/25	48	$1.8 \ge 10 \pm 0.25$	15/29	60	$4x \ 10^{1} \pm 0.7x10$	
Fusarium sp.	5/25	20	$1.5 \ge 10 \pm 0.2 \ge 10$	1/25	4	$0.5 \ge 10 \pm 0.0$	10/25	40	5 x 10±2x10	
Cladosparium sp.	9/ 25	36	$3.5 \ge 10 \pm 0.1 \ge 10$	10/25	40	$1.1 \ge 10 \pm 0.2$	25	20	$4 \ge 10^2 \pm 0.3 \ge 10^2$	
Mucor sp.	6/25	24	$2.1 \times 10 \pm 0.1 \times 10$	5/25	20	$1 \ge 10 \pm 0.12$	10	40	$0.3 \times 10^{1} \pm 2.0 \times 10^{1}$	
Rhizop sp.	4/25	16	$1.0 \ge 10 \pm 0.1 \ge 10$	4/25	16	$0.5 \ge 10 \pm 0.2$	6	20	$1x10^{2} \pm 0.2x10$	
Yeast sp.	11/25	44	$2.0 \times 10 \pm 0.1$	5/25	20	$1 \ge 10 \pm 0.3$	5	20	$10^{1} \pm 0.03 \times 10^{-1}$	

25 samples were examined.

Table (2): prevalence of members of Aspergillus spp. in frozen meat, milk and poultry feed.

Fungal genera		Prevalence of fungi										
		Frozen meat			Raw	Milk	Poultry Feed					
	+ve	%	Colony count ± SE	+ve	%	Colony count \pm SE	+ve	%	Colony count ± SE			
A. flavus	11	44	$1.6 \ge 10 \pm 0.2 \ge 10$	15	60	3.3 x 10 ±0.3x10	15	60	$1 \ge 10^2 \pm 2 \ge 10^2$			
A. niger	10	40	2.8 x 10±0.3x10	12	48	$2.8x \ 10 \pm 0.2x \ 10$	10	40	2 x 10±1x10			
A. candidus	8	32	2.5 x10±0.1 x10	3	12	$1x10 \pm 0.2x10$	8	32	$0.5 \times 10^{2} \pm 0.03$			
A. fumigatus	6	24	1.0 x 10±0.0	8	32	$1.6x10 \pm 0.2x10$	7	28	3x10±0.1x10			
A. ochraceus	3	12	0.7 x 10±0.0	4	16	$1x10 \pm 0.1x10$	13	52	$1x10^{1}\pm0.3x10$			
A. terrus	3	12	1 x 10±0.0	2	8	$1.3x10 \pm 0.1x10$	5	20	0.5x10±0.0			

25 samples were exam.

Table (3): Rates of aflatoxins production by A. flavus isolated from frozen meat, milk and poultry ration.

Source of isolates	No. of isolates	+ ve samples		Mean of count		Levels of AF ppb		
		No.	%		Max	Min	Mean \pm SE	
Frozen meat	10	5	50	16 ± 2.0	14	5.5	9.5 ± 0.71	
Raw Milk	10	3	30	10 ± 2.0	2.0	0.5	1.0 ± 0.1	
Poultry feed	10	8	80	10 ± 0.042	1000	150	60 ± 0.1	

Table (4): Haematological picture of aflatoxicated rats and those treated with DDB and control ones.

	Hb	RBCs	PCV
Control 1	14.6 ± 0.33^{A}	5.57 ± 0.17^{A}	$42.4 \pm 0.92^{\rm A}$
Group 2	12.6 ± 0.11^{aB}	4.88 ± 0.058^{aB}	38.2 ± 0.374^{aB}
Group 3	15.12 ± 0.16^{bc}	5.65 ± 0.183^{abcD}	45.6 ± 0.245^{abD}
F-calculated	28.022#	28.788#	8.377#
LSD	0.75333	1.8500	1.4333
11 G1 1 G			

Significant at P < 0.05 using ANOVA test

Aa, Bb, Cc Significantly different between two comparison groups against capital litter at P < 0.05 using LSD.

Group 1: control -ve

Group 2: treated with aflatoxin

Group 4: treated with aflatoxin + DDB

Table (5): Total and differential leucocytic count of aflatoxicated rats and those treated with DDB and control ones.

	WBCs		Differential lymphocytic count							
	X 10 ³ /mm ³	Segment	Lymphocytes	Monocyte	Eosinophils	Basophils	Staff			
Control 1	$11.02 \pm 0.32^{\text{A}}$	$30.6 \pm 1.03^{\text{A}}$	$61.2 \pm 0.73^{\text{A}}$	3.8 ± 0.49	$3.4 \pm 0.25^{\text{A}}$	0.6 ± 0.24	0.4 ± 0.24			
Group 2	17.8 ± 0.192^{aB}	42.00 ± 0.447^{aB}	51.4 ± 0.4^{B}	3.2 ± 0.374	2.4 ± 0.245^{a}	0.40 ± 0.245	0.80 ± 0.20^{B}			
Group 3	14.78 ±0.107 ^{ab}	32.20 ± 0.20^{bD}	61.2 ±0.489 ^{bD}	2.60 ± 0.245	$2.80 \pm 0.20^{\circ}$	0.60 ± 0.245	0.40 ± 0.245			
F-calculated	8.377#	111.558#	130.729#	2.174	4.529#	0.207	3.500#			
LSD	0.68400	4.8500	5.5000		0.750		0.8000			

Significant at P < 0.05 using ANOVA test

Aa, Bb, Cc Significantly different between two comparison groups against capital litter at P < 0.05 using LSD.

Group 1: Control –ve Group 2: treated with aflatoxin Group 3: treated with aflatoxin + DDB

Table (6): The induced effect of DDB treatment on urea, creatinine and tarnsaminases activities in aflatoxicated rats and control ones.

	Urea	Creatinine	ALT	AST
Gp 1	$19.45 \pm 0.36^{\text{A}}$	$0.56 \pm 0.003^{\rm A}$	$17.50 \pm 0.47^{\text{A}}$	56.0 ± 0.31^{A}
Group 2	31.86 ± 0.99^{aB}	0.712 ± 0.012^{aB}	34.2 ± 0.86^{aB}	86.6 ± 2.56^{aB}
Group 4	30.66 ±0.546 ^{cD}	0.70 ± 0.007^{acD}	26.4 ± 0.812^{abD}	75.6 ± 1.50^{abcD}
F-calculated	74.981#	70.949#	98.615#	118.355#
LSD	3.091	0.024	6.916	8.266

Significant at P < 0.05 using ANOVA test

Aa, Bb, Cc Significantly different between two comparison groups against capital litter at P < 0.05 using LSD. Group 1: Control –ve Group 2: treated with aflatoxin

Group 3: treated with aflatoxin + DDB

Table (7): Serum protein electrophoretic pattern of toxicated rats and those treated with DDB and control ones.

Groups	T.P.	Albumin	Alpha1	Alpha2a	Alpha2b	Beta1	Beta2	Gama1	Gama2a	Gama2b
Control	$7.64 \pm$	$2.08 \pm$	$0.523 \pm$	0.41 ±	$0.646 \pm$	$1.217 \pm$	$0.533 \pm$	1.2 ±	$0.67 \pm$	$0.353 \pm$
Control	0.64 ^A	0.011 ^A	0.016	0.016 ^A	0.018 ^A	0.007 ^A	0.006 ^A	0.021 ^A	0.019 ^A	0.004 ^A
Group 2	7.11 ±	$1.748 \pm$	$0.544 \pm$	$0.398 \pm$	0.54 ±	$1.06 \pm$	$0.50 \pm$	$1.096 \pm$	$0.834 \pm$	$0.39 \pm$
Group 2	0.046 ^B	0.009 ^{aB}	0.009	0.008^{B}	0.004^{aB}	0.01 ^{aB}	0.007^{aB}	0.012 ^a	0.014 ^a	0.027 ^B
Crown 4	$7.86 \pm$	2.09 ±	$0.526 \pm$	$0.498 \pm$	$0.644 \pm$	$1.138 \pm$	$0.59 \pm$	$1.118 \pm$	$0.870 \pm$	$0.388 \pm$
Group 4	0.059 ^{abcD}	0.019 ^{bcD}	0.009	0.008 ^{abcD}	0.008^{bcD}	0.008 ^{abcD}	0.008^{abD}	0.0107 ^{aD}	0.011 ^{ac}	0.009 ^{cD}
F-calculated	53.491#	171.594#	1.089	36.273#	30.069#	63.702#	43.379#	15.345#	39.271#	12.618#
LSD	0.22133	0.08667		0.5333	0.04583	0.0333	0.0333	0.08200	0.05333	0.04550
			•							

Significant at P < 0.05 using ANOVA test

Aa, Bb, Cc Significantly different between two comparison groups against capital litter at P < 0.05 using LSD.

Evaluation of total proteins showed significant increase in group 4 which administrated aflatoxin and DDB together with salicylic acid.

Group 1: Control -ve - Group 2: treated with aflatoxin-Group 4: treated with aflatoxin + DDB

REFERENCE

- Abdel- Hameid, N.A. (2007): "Protective role of dimethyl diphenyl bicarboxylate (DDB) against erythromycin induced hepatotoxicity in male rats." Toxicol. In Vitro, 21 (4): 618- 625.
- Abdel- Salam, O.M; Sleem, A.A. and Morsy, F.A. (2007): "Effects of biophenyldimethyl- dicarboxylate administration alone or combined with silymarin in the CCl₄ model of liver fibrosis in rats." Scientific World J., 24 (7): 1242- 1255.
- 3. Aravind, K.L.; Patil, V.S.; Devegowda, G.; Umakantha, B. and Ganpule, S.P. (2003): "Efficacy of esterified flucomannan to counteract mycotoxicosis in naturally contaminated feed on performance and serum biochemical and hematological parameters in broilers." Poult Sci., 82: 571- 576.
- 4. **Bao Xue Yao (2002):** "Effect of dimethyl diphenyl bicarboxylate on the metabolism and hepatotoxicity of aflatoxin B_1 in rats." Institute of Materia Medica, Chinese Academy of Medical Science; 37 (10): 753-757.
- 5. Bilgic, H.N. and Yebyldere, T. (1998): "Civcivlered deneysel aflatoksikozisde bobrek lezyonlary." Ciftlik Dergisi Sayy: S-P. 90- 92.

- 6. Celyk, K.; Uluocak, N. and Ayapan, T. (1999): "A farkly dozlardaki mycotoxins Japan Byldyrcynlarynyn (coturnix coturnix Japonica) performanslary ile histopatolojik ozelliklerine etkileri." YuTA V 1999-Ystanbul. 1999.
- Conner, D.E.; Samson, R.A.; Hoching, A.D.; Pitt, J.I. and King, A:D. (1992): "Evaluation of methods for the selective enumeration of Fusarium species in food stuffs." Modem Method in Food Mycology Development in Food Sci., 229-302.
- Don, B.I.R. and Kaysen, G. (2004): "Poor nutritional status and inflammation: serum albumin, relationship to inflammation and nutrition." Seminars in Dialysis, 17: 432-437.
- El- Ahl, Rasha, H. Sayed; Refai, M.K. and Hassan, A.A. (2006): "Prevalence of fungi and toxigenicity of *A*. *flavus* and *A*. *ochraceus* isolated from single and compound feed with particular references to the elimination of these contaminants." Egypt. J. Agric. Res., 86 (1): 500- 510.
- Eraslan, G.; Essiz, D.; Akdogan, M.; Karaoz, E.; Oneu, M. and Ozyildiz, Z. (2006): "Efficacy of dietary sodium bentonite against subchronic exposure to dietary aflatoxin in broilers." Bull. Vet. Inst. Pulawy, 2004, 50: 107-112.

- Gabal, M.A.; Hegazy, S.M. and Nagwa, Y. Hassanien (1994): "Aflatoxin production by field isolated of *Aspergillus flavus*." Vet. Human Toxicol., 36: 519-521.
- Gao, M.; Zhang, J. and Liu, G. (2005): "Effect of diphenyl dimethyl bicarboxylate on concanavalin Ainduced liver injury in mice." Liver Int., 25: 904- 912.
- Hamdy, A.H.; Aida, M.A.; Nagy, H.A. and Baouf, R.R. (1995): "Natural occurrence of mycotoxins in feedstuffs and toxicity to farm animals." Alex. J. Vet. Sci., 11: 113- 120.
- Hassan, A.A. and Hammad, A.M. (2001): "Fungi and mycotoxins in milk powder and its product (soft cheese)." J. Egypt Vet. Med. Ass., 61 (2): 303- 309, 25th Arab Vet. Med. Congress, Cairo Egypt.
- 15. Hassan, A.A. and Mogeda, K.M. (2003): "New trails of the use of molasses and garlic extracts for combating mycotoxicosis." Kafr El- Sheikh Vet. Med. J., 1 (1): 653-680.
- Hassan, A.A.; Hussain, M.; El- Azzawy, M.H. and Saad, A.E. (1997): "Immunosuppression effect of aflatoxins in chickens." Arab Vet. Med. Congress, J. Egypt Vet. Med. Ass., 57 (1): 917- 931.
- Hassan, A.A.; Koratum, K.M. and Amal, I.Y. El-Khawaga (2002): "Effect of selenium in broiler chicken fed a diet containing *F. moniliforme* culture material supplied with known level of fumonism B₁." Egypt J. Comp. Pathol. and Clinical Pathol. 15 (1): 98-110.
- Hassan, A.A.; Ragheb, R.R. and Nariman, A.R. (2004): "Pathological changes in cows spontaneously fed on some mycotoxins." Egypt J. Comp. Pathol. and Clinic. Pathol., 17: 282-293.
- Hassan, A.A.; Rhageb, R.R. and Soher, A. Mansour (2005): "Influence of some mycotoxins on hormones of animal." Egypt J. Comp. Pathol. and Clinical Pathol. 18 (1): 98- 110.
- Henry, R.J. (1974): "Clinical chemistry, principles and techniques." 2nd Ed., Harport and Rowhogerstown, M.D. 862.
- Jain, N.C. (1986): "Schalm's Veterinary Haematology."
 4th ed. Lea and Febiger Philadelphia, USA.
- 22. Jin, J.; Sun, H.; Wei, H. and Liu, G. (2007): "The anti- hepatitis drug DDB chemosensitizes multi-drug resistant cancer cells in vitro and in vivo by inhibiting P-gP and enhancing apoptosis." Invest. New Drugs, 25 (2): 95- 105.
- Kin, S.N.; Kim, S.Y.; Yim, H.K.; Lee, W.Y.; Ham, K.S.; Kim, S.K.; Yoon, M.Y. and Kim, Y.C. (1999): "Effect of dimethyl- 4, 4-.dimethyloxy-5, 6, 5, 6dimethylenedioxybiphenyl-2,2- dicarboxylate (DDB) on chemical-induced liver injury." Biol Pharm. Bull., 22 (1): 93-95.
- 24. Laemmli, U.K.,(1970): Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 : 680-685.
- 25. Lu, H. and Li, Y. (2002): "Effect of dimethyle diphenyl bicarboxylate on aflatoxin in rats." Institute of Materin Medica; 37 (10): 733-737.
- Magnoli, C.E.; Saenz, M.A.; Chiacchiera, S.M. and Dalcero, A.M. (1999): "Natural occurrence of Fusarium species and Fumonisin-production by

toxigenic strains isolated from poultry feeds in Argentina." Mycopathologia, 145: 35-41.

- Nan, J.X.; Park, E.J.; Kim, H.J.; Ko, G. and Sohn, D.H. (2000): "Antifibrotic effects of the methanol extract of polygonum aviculare in fibrotic induced by bile duct ligation and scission." Biol. Pharm. Bull., 23 (2): 240-243.
- Oguz, H.V. (1997): "The prevenyive efficacy of polyvinylpolyprolidone (PVPP) alone and its combination with other adsorbents into broiler feeds against aflatoxicosis." Ph. D. Thesis, Univ. of Sseluck, Institute of Health Sci. Konya.
- ÓÓO Farrell, P.H. (1975): High resolution twodimensional electrophoresis of proteins. J. Biol. Chem.250:4007-4021.
- 30. Parent- Massin, D. (2004): "Haematotoxicity of trichothecenes." Toxicol. Lett., 153 (1): 75-81.
- 31. Park, E.Y.; Ki, S.H.; Ko, M.S.; Kim, C.W.; Lee, M.H.; Lee, Y.S. and Kim, S.G. (2005): "Garlic oil and DDB comprised in a pharmaceutical composition for the treatment of patients with viral hepatitis, prevents acute liver injuries potentiated by glutathione deficiency in rats." Chem. Biol. Interact., 30; 155 (1-2): 82-96.
- 32. **Pesce, J. and Kaplan, A. (1978):** "Methods in clinical chemistry." 2nd Ed., Mosby, Missouri, USA.
- Raju, M.V. and Devegawda, G. (2000): "Influence of esterified- glucomannan on performance and organ morphology, serum biochemistry and haematology in broilers exposed to individual and combined mycotoxicosis (aflatoxin, ochratoxin and T- 2 toxin)." Br. Poult Sci. 41 (5): 640- 50.
- Reitman, S. and Frankel, S. (1957): "Acolorimetric determination of serum glutamic oxaloacetic acid and glutamic pyruvic transaminase." Am. J. Clin. Path., 28: 56-58.
- 35. Salem, R.M.; Mogda, K.; Mansour, M.A, Rashid and Koratum, K.M. (2007): "Comparative study on the efficacy of salicylic acid and silicate compounds in adsorption of aflatoxins." Egypt. J. Comp. Path. and Clin. Pathol., 20 (1): 149-164.
- Schalm, D.W.; Jain, N.C. and Carivil, E.Z. (1975): "Veterinary haematology." 3rd Ed. Lea and Fabiger Philadelphia.
- Scott, P.M. (1990): "Natural poisons." AOAC 15th Ed. Helrich K. Virginia, USA.
- 38. SPSS 14 (2006): "Statistical Package for Social Science, SPSS for windows Release 14.0.0, 12 June, 2006." Standard Version, Copyright SPSS Inc., 1989-2006, All Rights Reserved, Copyright
 ß SPSS Inc.
- Sun, H. and Liu, G. (2006): "Inhibitory effect of dimethyl dicarboxylate biphenyl on invasion of human hepatocellular carcinoma cell line MHCC97- H with high metastasis potential and its mechanisms." Ai Zheng, 25 (12): 1464-1469.
- 40. Wafia, H. Abdallah and Hassan, A.A. (2000): "Sanitary status of some ready to eat meal in Cairo and Giza Governorate." J. Egypt Vet. Med. Ass., 60 (7): 95-104.
- Wybenga, D.R.; Digigorgio, J. and Piliggi, V.J. (1971): "Automated method for urea measurement in serum." Clin. Chem., 17: 891-895.