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Abstract: Age-related diseases, such as osteoporosis, arthritis, accidental fracture, etc., are increased dramatically due 
to rapid progressing modern medical science and technology push the early arrival of aging society of mankind. How to 
increase osteoid of the healthy cell, restrain the malignant cell, and fast recovery from bone fracture are becoming major 
research subjects in the medical community. The growth of bones is proved in medical research to have some 
relationship with external strength, such as direct current, electromagnetic field, coupled electrical field, ultrasound, etc., 
and all such researches have their effectiveness in different level. However, few people study the mechanical excitation 
(vibrating shaker) onto the cell directly in subsonic frequency range. This research studies the culture of mice MC3T3 
osteoblast cell in vitro, stimulate the growing cell with mechanical broad range subsonic frequency with or without 
temperature factor and investigate the effect of different amplitude, repeated number of times, and excitation durations 
of the stimulation. The cell concentration are then measured by MTT assay by fluorescence spectrometer and RNA 
assay by electrophoresis diagram and compared with the control (nature growing cell) set. Comparison of different 
parameters are obtained together with mechanical setup are ready to provide the information about the proliferation of 
osteoblast for medical community reference. [Life Science Journal. 2010; 7(1): 62 – 67] (ISSN: 1097 – 8135). 
Keywords: Osteoblast cell; Mechanical Stimulation; Broadband Frequency; MTT assay; RNA assay. 
________________________________________________________________________________________________ 
1. Introduction 

The rapidly progressing modern medical science 
and technology push the early arrival of aging society of 
mankind. However, Age-related diseases are increased 
dramatic accordingly. Osteoporosis, so called “Silent 
Disease” in medical community, is one of the major 
problems for elderly people. The occurrence probability 
of osteoporosis induced fracture is more than three times 
of heart attack, stroke, and breast cancer within women. 
There are over 1.6 million hipbone fracture patients per 
year all over the world due to osteoporosis. 

Lots of studies aim on how to improve or restrain 
the proliferation of osteoblast cell (human and/or animal 
model, in vitro or in vivo) by employing the external 
energy and/or combined with different physical/chemical 
treatment, co-culture with different materials, etc. 

Chang [1] investigates the effect of physical 
stimulation on osteoporosis in osteoporotic animal 
models including the effect of: 1) whole body vibration 
(WBV) on osteoporotic SD rats model, and 2) pulsed 
electro- magnetic field (PEMF) and high magnetic single 
pulsed electromagnetic field (HMSP-EMF) on 
osteoporotic BALB/C mice model. 

Tsai [2] studies the effects of low frequency pulsed 
electromagnetic fields on treatment or prevention of 
osteoporosis by inducing osteoclast (cocultured with 
osteoblast cell) apoptosis.  

Rutten et al. [3, 4] employ low-intensity pulsed 
ultrasound (LIPUS), histology and histomorphometric 
analysis to determine bone formation and bone 
resorption parameters for bone healing at the tissue level 
in patients with a delayed union of the osteotomized 
fibula and find out that in both areas of new bone 
formation and cancellous bone, LIPUS significantly 
increased osteoid thickness, mineral apposition rate, and 
bone volume. 

Tsui [5] discovered that the correlation coefficient, 

amplitude, and conduction velocity of the compound 
action potential (CAP) of the nerve tissue of a bullfrog 
are affected by ultrasonic stimulation which were 
postulated due to the mechanism of opening and closing 
ion channel gate causing modification of ion 
permeability of cell membrane in experiments. 

Reher et al. [6] discover that Long wave ultrasound 
(LWU, 45 kHz) is capable of inducing a comparable or 
even higher enhancement of bone formation compared 
with traditional ultrasound (1 MHz), which, with LWU’s 
greater penetration, may accelerate the healing effect of 
ultrasound on osteoradionecrosis. Li et al. [7] compare 
the mechanisms of ultrasound on osteoblast proliferation 
with those of pulsed electromagnetic field (PEMF), by 
different signal transduction pathway inhibitors. 
Myrdycz et al. [8] evaluate the adhesion between cells 
and various substrates by ultrasounds [9]. Tanimoto et al 
[10] indicate that osteoblast-like cell proliferation 
increased with increasing sintering temperature and the 
biological stability of the sintered tricalcium phosphate 
(TCP) sheet surface was considered to have affected cell 
proliferation. Some researchers study how to culture the 
osteoblast cell on metallic support, phosphate ceramics, 
other surface or material, etc. [11~17]. 

Dumas et al. [18] identify that low-amplitude, 
high-frequency strain regimen is able to increase major 
matrix proteins of bone tissue and to regulate the 
expression of vascular endothelial growth factor (VEGF) 
variants, which shows that an appropriate combined 
loading has the potential to function cellularized 
bone-like constructs. 

Bochu et al. [19] find that the mechanical vibration 
can distinctly enhance the growth of Gerbera jamesonii 
acrocarpous callus at 3 Hz in frequency, and its quality is 
higher than the controls. Meanwhile, after stimulation by 
mechanical vibration, the fibers direction in the cell wall 
was unclear, the degree of accumulation of fibers in the 
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cell wall was high and the cytoskeleton rearranged. 
Tanaka et al. [20] indicate that MC3T3-E1 

osteoblasts cells are more sensitive to low amplitude, 
broad frequency (0 to 50Hz) strain, and this kind of 
strain could sensitize osteoblasts to high amplitude, low 
frequency strain, which also implies a potential 
contribution of stochastic resonance to the mechanical 
sensitivity of osteoblasts. Mechanical static stretching or 
strain are also employed for osteoblast cell proliferation 
[21~25]. 

Frias et al. [26] conduct the experiments to grow 
osteoblasts on the surface of a piezoelectric material, 
both in static and dynamic conditions at low frequencies 
(1 and 3Hz, respectively), and total protein, cell viability 
and nitric oxide measurements shows that both static and 
dynamic affect cell viability and proliferation negatively. 

Henriksen et al. [27] investigate mechanical 
stimulation of human osteoblast like cell through 
intercellular calcium wave propagation. 

When the vibrating wave propagate though a 
biological tissue, bioeffects including those induced by 
heat and vibration could result constructive and 
destructive effect for physiotherapy according to 
previous study. Also, the study of microscopic cell can 
assist to more understanding the macroscopic dynamic 
characteristic of bone structure [28]. 

This purpose of research is find the influence of 
mechanical stimulation over broad range of frequency 
onto mice MC3T3 osteoblast cell in vitro with different 
amplitude, time, excitation durations, and with or 
without temperature factor.  
 
2. Cell Cultivation 

The growth of bones is proved in medial research to 
have some relationship with external strength, such as 
direct current, electromagnetic field, coupled electrical 
field, ultrasound, etc., and all such researches have their 
effectiveness in different degree. 

This research studies the culture of mice MC3T3 
osteoblast cell in vitro, stimulate the growing cell with 
mechanical broadband frequency with or without 
temperature factor and investigate the effect of different 
amplitude, time, and excitation durations of the 
stimulation. The cells are then counted by MTT test and 
RNA extraction method and compared with the control 
(nature growing cell) set. 

The flow chart of culture and stimulation of murine 
osteoblast cell is shown in Fig. 1. 
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Fig. 1. The flow chart of culture and stimulation of 

murine osteoblast cell 

 
3. MTT Assay 

The MTT assay is a laboratory test and standard 
colorimetric assay (an assay which measures changes in 
color) to estimate the survival rate of the cell by 
measuring the reduction of yellow 3-(4,5-dimethythia- 
zol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) by 
mitochondrial succinate dehydrogenase. The procedures 
are as follows: 
1. Preparation 
(1) PBS 
(2) MTT (5 mg/ml in PBS) – filter and prepare freshly 
(3) Acidic isopropanol (0.1N HCl in absolute isopro- 

panol) 
(4) 96-well plate (flat bottom) 

2. Procedure 
(1) Plate cells (104-106 cells) in 200 ml PBS in 96-well 

(flat bottom). 
(2) Add 20 ml of MTT solution, mix well. 
(3) Incubate for 4 hour in 37oC 
(4) Remove aliquot for analysis; add 200 ml acidic 

isopropanol and mix well. 
(5) Incubate additional 1 hour in 37oC 
(6) Read absorbance intensity of the cell from 

Fluorescence spectrometer. 
 
4. RNA Assay 

The flow chart of RNA assay is shown in Fig. 2. 
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Fig. 2. The flow chart of RNA assay 

 
4.1. RNA Extraction 
1. Pipetting up the upper layer solution of the osteoblast 

cell, add 1 ml TRIZOL to suspend the cell. 
2. Pipetting TRIZOL suspension solution to centrifuge 

tube, add 220 ul (BCP) excited for 15 seconds, wait 
for 2 minutes. 

3. Place into 12,000 rpm, 4oC centrifuge for 15 minutes. 
4. Pipetting upper layer solution 400 ul to new centrifuge 

tube and mixed with 550 ul isopropanol. 
5. Place into -80oC container for 30 minutes. 
6. Direct place into 12,000 rpm, 4oC centrifuge from 

cryo-status and spin for 20 minutes. 
7. Empty the solution, mixed with 1cc, 75% alcohol 

(0.1%DEPC water treated) 
8. Place into 8,000 rpm, 4oC centrifuge spinning for 5 

minutes. 
9. Pipetting the solution from the tube, dry up in the air 

(the cells are stuck tightly on the tube and will not 
come off from the tube, can use paper to such the 
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remaining solution). 
10. Add 0.1%, 15 ul (0.015 cc) DEPC water, mixed for 

15 minutes. The RNA (appeared in sticky state since it 
contains nucleic acid) is ready for the assay. 

 
4.2. Reverse Transcriptase cDNA 
1. Quantitative total RNA, dilute to 500 ng/ul, pipetting 2 

ul around 1 ng/ul. Calculate when the ph value is 
greater than 1.6 then can be used for experiment. 

2. Reverse Transcriptase (RT) response: RT Polymerase 
Chain Reaction (PCR) is a widely used transformation. 
In RT-PCR, one RNA chain can be RT to 
complimentary DNA (cDNA), then use this template 
and PCR to proceed DNA duplication. 

 
5. Experimental setup  
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Fig. 3. Mechanical stimulation setup for MC3T3 cell 

 
The experimental set up is shown in Fig. 3 to 

investigate the proliferation effects of osteoblast cell 
(MC3T3) under mechanical stimulation with different 
parameters: broad range of frequencies, amplitude, 
duration, repeated times, and temperature effects, etc. 
The MC3T3 cell culture plate is fixed at the center tip of 
a vibration shaker which is excited by one channel of HP 
35670A spectrum analyzer through a 220V power 
amplifier. The sensor of a Laser Displacement 
Vibrometer is hanged on the test rig and placed around 3 
cm apart from the top of the cell culture plate to measure 
actual cell vibration signal. This Laser Displacement 
Vibrometer is connected to the other channel of HP 
35670A spectrum analyzer through 110V power supply. 

 
6. Results and Discussion 

The SEM (Scanning Electron Microscope) photos 
of just seeded and 80% growing of MC3T3 cell are 
shown in Fig. 4, 5. 

 
Fig. 4. The new seeded MC3T3 cell 

 
Fig. 5. 80% growing of the new seeded MC3T3 cell 

 
Two major categories, under and avoid temperature, 

are described as follows: 
 
6.1. Under temperature influence 
6.1.1. Varying frequency 

There are seven sets of cell culture plates, control_1, 
control_2 and five different excitation frequencies: 100 
to 2000 Hz with wave form, amplitude (1 VPK, peak to 
peak), duration (20 min) keep the same. When one set of 
the culture plate is taking the stimulation in room 
temperature, all other six plates are kept inside the 37oC 
incubator. Therefore, each set has different exposure 
period to the temperature. Since MTT and RNA assays 
will cause the death of the cell, hence, it needs two 
control sets (used in all experiments of this study) to 
evaluate the initial and final cell concentration under 
nature growth without any external stimulation. The cell 
proliferation varied through different frequencies is 
shown in Fig. 6. 500 and 1000 Hz excitation are 
restraining the growth of cell, while 2000 Hz excitation 
plate has the same proliferation rate with the nature 
growth. 
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Fig. 6. Cell affected by excitation frequencies 

 
6.1.2. Varying duration 

The effect of cell growth on different excitation 
duration, with fixed frequency (2KHz), amplitude (1 
VPK), and sine wave form, from 5 to 60 minutes is 
shown in Fig. 7. 40 minutes of excitation has increased 
the cell concentration almost 50% of the nature growth 
and over 50 minutes seams not affect much. 
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Fig. 7. Cell growth affected by excitation duration 
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6.1.3. Varying amplitude 
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Fig. 8. Cell growth affected by excitation amplitude 

 
The effect of cell growth on different excitation 

amplitude, with fixed frequency (2KHz), duration (40 
min), and sine wave form, from 1 to 5 VPK (peak to 
peak voltage) is shown in Fig. 8. In the case, excitation 
amplitude seams not affect cell growth very much. 

 
6.1.4. Varying number of repeated experiments 

The effect of cell growth on different number of 
repeated experiments, with fixed frequency (2KHz), 
amplitude (1VPK), duration (40 min), and sine wave 
form, from once to five times is shown in Fig. 9. This 
experiment takes total 3 days to accomplish.  Control_2 
specimen is kept in the incubator without any 
disturbance while other sets are taken in and out of the 
incubator up to five times. Hence, no repeated 
experiment is growing faster than the nature growing cell 
in 37oC 5% CO2 incubator. 
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Fig. 9. Cell growth affected by repeated experiments 

 
6.2. Avoid temperature influence 

In this category, all cultured plates are taken out of 
the incubator when each of them has been proceeded the 
experiment in room temperature. 
 
6.2.1. Varying frequency 

The cell proliferation varied through different 
frequencies with fixed amplitude (1 VPK), duration (20 
min), and sine wave form, is shown in Fig. 10. Similar to 
Fig. 6, 500 and 1000 Hz excitation are restraining the 
growth of cell, while 2000 Hz excitation plate has the 
same proliferation rate with the nature growth. 
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Fig. 10. Cell affected by excitation frequencies without 

temperature effects. 
 
The electrophoresis diagram, shown in Fig.11, 

presents similar results as Fig.10, which is the more cell 
concentration (1.5K, 2KHz in Fig.10) measured by 
Fluorescence spectrometer, the lighter on electrophoresis 
bar (4, 5 in Fig.11). 

 

 
Fig. 11. Electrophoresis diagram with different 

excitation frequencies without temperature effects 
 
6.2.2. Varying duration 
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Fig. 12. Cell growth affected by excitation duration 

without temperature effects 
 
The effect of cell growth on different excitation 

duration, with fixed frequency (2KHz), amplitude (1 
VPK), and sine wave form, from 5 to 60 minutes is 
shown in Fig. 12. It is different from Fig. 7, 10 minutes 
of excitation has increased the cell concentration the 
most, but only about 7% of the nature growth and over 
20 minutes seams not affect much. 
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6.2.3. Varying amplitude 
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Fig. 13. Cell growth affected by excitation amplitude 

 
The effect of cell growth on different excitation 

amplitude, with fixed frequency (2KHz), duration (40 
min), and sine wave form, from 1 to 5 VPK (peak to 
peak voltage), and without temperature effect is shown 
in Fig. 13. It is similar to Fig. 6, excitation amplitude 
seams not affect cell growth very much. 

 
6.2.4. Varying number of repeated experiments 

The effect of cell growth on different number of 
repeated experiments, with fixed frequency (2KHz), 
amplitude (1VPK), duration (40 min), and sine wave 
form, from once to five times is shown in Fig. 14. This 
shows significant difference from Fig. 9. All the cell 
specimens including nature growing one, are not 
cultivated well enough compared to the plate always 
stays in the incubator (control_2) in Fig. 9. This result 
suggests that the culture environment, temperature, 
humidity, atmosphere with 5% CO2, etc. are crucial to 
cultivate the osteoblast cell. 
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Fig. 14. Cell growth affected by repeated experiments 

without temperature effects 
 

7. Summary 
This research investigates the mechanical 

stimulation affects the proliferation of osteoblast cell. 
Different excitation parameters, temperature, broad 
range of frequencies, amplitude, duration, repeated 
number of experiments, etc., are compared for the 
cultivation of cells. The aim for this research is to 
understand the vibration stimulation of the murine 
osteoblast cell first and then use this model to analyze 
the related parameters of real human osteoblast or other 
cells in the future. Therefore, the result of this research is 
quite useful for physician’s reference. 

Several aspects are discovered during this research 
and listed as follows: 

1. Different frequencies of the stimulation have different 
effects onto the proliferation of the cell. Some 
frequencies (500, 1KHz) will suppress the proliferate 
of the cell, while others (1.5K, 2KHz) will increase 
the number of cell. 

2. In subsonic range of frequencies excitation, the 
amplitude plays no significant role in the cultivation 
of cell. 

3. The culture environment, including temperature, 
humidity, atmosphere with 5% CO2, etc. are crucial 
and will help to cultivate the osteoblast cell. 
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