Tree species diversity and distribution patterns in tropical forest of Eastern Ghats, India: a case study

C. Sudhakar Reddy^{*}, Prachi Ugle

Forestry & Ecology Division, National Remote Sensing Agency, Balanagar, Hyderabad 500037, India

Received August 7, 2008

Abstract

The aim of the investigation was to analyze phytosociological characteristics and diversity patterns of tropical forest of Eastern Ghats – R.V. Nagar Range, Visakhapatnam district. The three forest types here include semi evergreen, moist deciduous and savannah. The Shannon index was recorded high for moist deciduous with 5.50 followed by semi evergreen with 5.27 and savannah with 3.71. Similarity index reveals that only 62.4% of floristic composition of semi evergreen forest is similar with moist deciduous, followed by 32% between moist deciduous and savannah and a very low similarity (5%) was observed between semi evergreen and savannah. Phytosociological characteristics reveals that *Pterocarpus marsupium, Schleichera oleosa, Mangifera indica, Syzgium cumini, Bauhinia vahliii, Mallotus philippensis* and *Grewia tilifolia* were the most frequent species when overall forest types were considered. Based on Raunkier's frequency distribution 81.4% species are falling under A frequency class (1% – 20%), 6.98% species fall in B and C class category (21% – 40% and 41% – 60% respectively) and 4.65% in D class (61% – 80%) in semi evergreen. Moist deciduous showed 82.1% in A class, 8.3% in B class, 7.1% in C class followed by 1.2% in D & E class. In the case of savannah 61% were in B, 28% in D and 11% in E class. The distribution pattern revealed that 107 species showed regular pattern, 12 as random and one species as contiguous pattern. The study provided diversity and distribution pattern of tree species in R.V. Nagar Range, Vishakapatnam district, Andhra Pradesh. [Life Science Journal. 2008; 5(4): 87 - 93] (ISSN: 1097 – 8135).

Keywords: tropical forest; semi evergreen; moist deciduous; savannah; Raunkier's frequency distribution

1 Introduction

Tropical forests are regarded as one of the most species diversity rich terrestrial ecosystems. They are distinguished from all other terrestrial ecosystems by a very high diversity in many levels (species, life forms, etc). However, most of these forests are under immense anthropogenic disturbances and require careful management intervention to maintain overall biodiversity and sustainability (Kumar *et al*, 2006). Information with reference to species diversity and distribution pattern may help in evaluating the ecological significance of the study area.

Convention on biological diversity (CBD) commits

parties to the convention amonsth them India, to take an inventory of their biodiversity resources and to organize programmes of regular monitoring (UNEP-CBD, 1991). Nevertheless, there have been few attempts to identify patterns of distribution of species in India, and other parts of the world in terms of forest types or vegetation series or vegetation types. These attempts take the form of classification i.e. identification of discrete classes from what are largely continuous distributions. Such delineation of discrete sets of species may be based on phonology or physiognomy, levels of human disturbances, or identity of the dominant or economically important species. The choice of sampling localities may then be related to the distribution of different forest or vegetation types (Ghate *et al*, 1998).

An understanding of the distribution of tree species and their assemblages must play an important role in elucidating the larger patterns of distribution

^{*}Corresponding author. Tel: 040-23884219; Email: drsudhakarreddy@gmail.com

of biodiversity. In Peninsular India, quantitative phytodiversity inventories are available from the forests of the Western Ghats (Reddy *et al*, 2008a), however Eastern Ghats remains as a neglected area for studies (Kadavul & Parthasarathy, 2000; Jayakumar *et al*, 2002; Natarajan *et al*, 2004), Orissa (Reddy *et al*, 2007) and Andhra Pradesh (Reddy *et al*, 2008b).

The Eastern Ghats are located along the Peninsular India extending over 1750 km with average width of about 100 km and covering the area under 11° 03' to 22° 32' N latitudes and 77° 02' to 87° 02' E longitudes. R.V. Nagar Range is situated between 17° 48' to 18° 00' N and 82° 02' to 82° 16' E in Visakhapatnam district, Andhra Pradesh and covers an area of 312 km². It is a part of proposed Chintapally biosphere reserve and has unique vegetation composition with semi evergreen forests in the tracts of Gudem valley. The highest peak in Andhra Pradesh in Sambarikonda (1527 m), which is found in this range. The forest area in the range is 224.5 km². The forest types within study area are subjected to anthropogenic disturbances, particularly for shifting cultivation.

The present study was undertaken to present a database on diversity and distribution pattern of R.V. Nagar Range, Visakhapatnam.

2 Materials and Methods

Stratified random sampling method was employed to collect tree data. Sample plots (quadrat) size of 20×20 were placed and systematically surveyed for all trees at ≥ 30 cm girth at breast height during 2005 - 2006. The data was obtained from a total of 50 sample plots (area sampled was 2 ha). The species were identified with the help of Flora of Presidency of Madras (Gamble & Fischer, 1915 - 1935) and Flora of Visakhapatnam district (Subbarao & Kumari, 2002).

The following phytosociological characteristics of the tree communities were assessed: % frequency, density, abundance, basal area and IVI. Species diversity of each forest type was determined using Shannon Weiner index (Shannon and Weiner, 1963). Ratio of abundance to frequency (Whitford, 1949) was calculated where in distribution was considered regular: below 0.025, random: 0.025 - 0.05 and contiguous: if > 0.05 (Curtis & Cottam, 1956). Each tree species was grouped into five frequency classes based on Raunkier's law of frequency and the difference between the normal frequency diagram and regional frequency diagram was noted. The frequency classes are A, B, C, D, and E according to

Raunkier's frequency spectrum. The values in range for each class are as follows (Table 1):

S/No.	Frequency class	% values
1	А	0 - 20
2	В	21 - 40
3	С	41 - 60
4	D	61 - 80
5	Е	81 - 100

The Raunkier's frequency diagram is as follows:

 $A > B \le C \ge D < E.$

We have computed Similarity index between three vegetation types using Sorenson's similarity index (Sorenson, 1948) among the three vegetation type.

3 Results and Discussion

The predominant forest types in R.V. Nagar Range of Eastern Ghats are semi evergreen, moist deciduous and savannah.

A total of 1204 trees belonging to 274 tree species among 45 families from 50 sample plots were enumerated. The number of tree species in semi evergreen forest type was 86, followed by 84 in moist deciduous and savannah with 18 tree species. The basal area ranged from 7.792 m²/ha – 49.2 m²/ha with the highest basal area recorded in semi evergreen. Similarity index reveals that only 62.4% of floristic composition of semi evergreen forest is similar with moist deciduous, followed by 32% between moist deciduous and savannah and a very low similarity (5%) was observed between semi evergreen and savannah (Table 2).

Table 2. Comparison of	tree parameters among	three forest types

Description	Semi evergreen	Moist deciduous	Savannah
No. of tree species	86	84	18
Basal area (m ² /ha)	49.2	43.7	7.79
Shannon index	5.27	5.50	3.71
Similarity index			
Semi evergreen		62.4	
Moist deciduous			32
Savannah	5		

The Shannon Weiner index varied from 3.71 - 5.50

with highest Shannon Weiner index recorded in moist deciduous. Bauhinia vahlii, Mallotus philippensis, Syzygium cumini and Schleichera oleosa were the most frequent species in semi evergreen forest type, Pterocarpus marsupium, Grewia tilifolia, Syzygium cumini, Schleichera oleosa, Mallotus philippensis, Diospyros sylvatica and Bauhinia vahlii were the most frequent species found in moist deciduous type followed by Terminalia chebula, Terminalia alata, Holarrhena antidysenterica, Phyllanthus emblica, Sterculia villosa, Bombax ceiba and Buchanania lanzan in Savannah. Pterocarpus marsupium, Schleichera oleosa, Mangifera indica, Syzgium cumini, Bauhinia vahliii, Mallotus philippensis and Grewia tilifolia were the most frequent species when overall forest types were considered (Table 3).

	Species	Relative density	Relative frequency	Relative Basal area	IVI	Raunkier's	Raunkier's frequency class	Distribution pattern
1	Pterocarpus marsupium	7.56	5.05	10.63	23.25	62.2	D	Regular
2	Schleichera oleosa	6.89	3.97	8.92	19.78	48.9	С	Regular
3	Mangifera indica	4.15	2.89	8.31	15.35	35.6	В	Regular
4	Syzygium cumini	3.65	4.15	7.34	15.15	51.1	С	Regular
5	Michelia champaca	2.57	2.89	7.93	13.39	35.6	В	Regular
6	Bauhinia vahlii	5.73	4.33	1.39	11.45	53.3	С	Regular
7	Mallotus philippensis	5.56	4.33	1.10	11.00	53.3	С	Regular
8	Grewia tilifolia	4.32	4.33	1.95	10.61	53.3	С	Regular
9	Terminalia alata	2.74	2.17	4.15	9.05	26.7	В	Regular
10	Garuga pinnata	2.66	2.35	3.86	8.87	28.9	В	Regular
11	Aphanamixis polystachya	1.50	2.53	4.49	8.51	31.1	В	Regular
12	Gmelina arborea	2.49	3.07	2.46	8.02	37.8	В	Regular
13	Litsea glutinosa	2.08	2.17	3.36	7.61	26.7	В	Regular
14	Cassia fistula	3.57	3.07	0.87	7.51	37.8	В	Regular
15	Nothopegia heyneana	1.50	1.08	3.94	6.51	13.3	А	Regular
16	Diospyros sylvatica	2.08	2.53	1.27	5.87	31.1	В	Regular
17	Macaranga peltata	1.41	1.99	1.51	4.91	24.4	А	Regular
18	Xylia xylocarpa	2.16	0.36	2.27	4.79	4.4	А	Contiguous
19	Terminalia chebula	2.08	1.81	0.85	4.73	22.2	В	Regular
20	Artocarpus heterophyllus	0.83	0.90	2.47	4.20	11.1	А	Regular
21	Terminalia bellerica	1.16	1.81	0.91	3.88	22.2	В	Regular
22	Diospyros Montana	0.75	0.72	2.17	3.64	8.9	А	Regular
23	Garcinia xanthochymus	1.66	1.08	0.59	3.33	13.3	А	Regular
24	Sterculia villosa	1.58	1.26	0.45	3.29	15.6	А	Regular
25	Ouigenia ougenensis	0.91	1.26	1.00	3.18	15.6	А	Regular
26	Holarrhena antidysenterica	1.58	0.90	0.25	2.73	11.1	А	Regular
27	Dillenia pentagyna	0.75	1.08	0.82	2.65	13.3	А	Regular
28	Garcinia spicata	1.00	1.08	0.44	2.52	13.3	А	Regular
29	Oroxylum indicum	1.16	0.72	0.59	2.48	8.9	А	Regular
30	Bischofia javanica	0.83	0.90	0.69	2.42	11.1	А	Regular
31	Callicarpa arborea	0.91	1.08	0.41	2.41	13.3	А	Regular
32	Miliusa tomentosa	0.66	0.90	0.61	2.18	11.1	А	Regular
33	Bauhinia semla	0.66	1.08	0.42	2.17	13.3	А	Regular
34	Cipadessa baccifera	0.75	1.26	0.13	2.14	15.6	А	Regular
35	Acacia pennata	0.75	1.26	0.10	2.11	15.6	А	Regular
36	Kydia calycina	0.58	1.08	0.27	1.93	13.3	А	Regular
37	Schefflera roxburghii	0.66	0.54	0.61	1.82	6.7	А	Regular
38	Cassine glauca	0.83	0.72	0.25	1.80	8.9	А	Regular
39	Diospyros candollena	0.25	0.36	1.19	1.80	4.4	А	Regular
40	Cinnamomum caudatum	0.66	0.90	0.23	1.80	11.1	А	Regular
41	Dolichandrone atrovirens	0.66	0.72	0.27	1.66	8.9	А	Regular

 Table 3. Phytosociological characteristics of overall vegetation type

Continued

Continued								
42 Antide	esma menasu	0.75	0.72	0.17	1.64	8.9	А	Regular
43 Phylla	inthus emblica	0.66	0.72	0.13	1.52	8.9	А	Regular
44 Bomb	ax ceiba	0.33	0.72	0.40	1.46	8.9	А	Regular
45 Artabe	otrys hexapetalus	0.66	0.72	0.04	1.42	8.9	А	Regular
46 Neona	uclea purpurea	0.42	0.54	0.45	1.41	6.7	А	Regular
47 Trichi	lia connaroides	0.58	0.54	0.22	1.34	6.7	А	Regular
48 Ficus	arnottiana	0.17	0.18	0.94	1.29	2.2	А	Random
49 Caryo	ta urens	0.42	0.72	0.13	1.27	8.9	А	Regular
50 Ficus	religiosa	0.08	0.18	0.93	1.19	2.2	А	Regular
51 Ziziph	us xylopyrus	0.42	0.72	0.05	1.19	8.9	А	Regular
52 Sloand	ea sterculia	0.25	0.54	0.25	1.04	6.7	А	Regular
53 Trema	orientalis	0.43	0.54	0.06	1.02	6.7	А	Regular
54 Carey	a arborea	0.25	0.36	0.37	0.98	4.4	А	Regular
-	a attenuata	0.25	0.54	0.15	0.94	6.7	А	Regular
56 Leea i	ndica	0.33	0.54	0.04	0.91	6.7	А	Regular
57 Meme	cylon edule	0.33	0.54	0.04	0.91	6.7	А	Regular
	glandulifera	0.42	0.36	0.13	0.91	4.4	А	Regular
	tes sepiaria	0.25	0.54	0.12	0.91	6.7	А	Regular
• •	ia indica	0.33	0.18	0.39	0.91	2.2	А	Random
	nania lanzan	0.25	0.54	0.08	0.87	6.7	А	Regular
	ia tomentosa	0.42	0.36	0.08	0.86	4.4	A	Regular
	iera ramiflora	0.25	0.54	0.04	0.83	6.7	A	Regular
	longum	0.42	0.36	0.02	0.80	4.4	A	Regular
-	nalia paniculata	0.45	0.36	0.15	0.76	4.4	A	Regular
	asperrima	0.17	0.36	0.18	0.70	4.4	A	Regular
	yros ebenum	0.25	0.18	0.27	0.70	2.2	A	Random
	ychia pedunculata	0.17	0.36	0.14	0.67	4.4	A	Regular
	monopetala	0.25	0.36	0.03	0.64	4.4	A	Random
	yros assimilis	0.17	0.18	0.29	0.64	2.2	A	Regular
	da pubescens	0.25	0.36	0.01	0.62	4.4	A	Regular
	a odoratissima	0.25	0.36	0.01	0.62	4.4	A	Regular
	semicordata	0.17	0.36	0.07	0.60	4.4	A	Regular
	a laevis	0.17	0.36	0.06	0.59	4.4	A	Regular
	nsea maderaspatna	0.25	0.18	0.16	0.59	2.2	A	Regular
-	ia apetala	0.33	0.18	0.03	0.55	2.2	A	Random
	ada multiflora	0.17	0.18	0.19	0.55	2.2	A	Random
•	lia ribes	0.17	0.18	0.11	0.46	2.2	A	Random
	itia monophylla	0.25	0.18	0.03	0.46	2.2	A	Random
	ciliata	0.17	0.18	0.10	0.40	2.2	A	Random
	nia cordifolia	0.25	0.18	0.01	0.44	2.2	A	Random
	a macrantha	0.08	0.18	0.16	0.44	2.2	A	Regular
	odaphne maderaspatana	0.08	0.18	0.15	0.42	2.2	A	Regular
	bera swietenioides	0.08	0.18	0.15	0.42	2.2	A	Regular
	a grandis	0.08	0.18	0.13	0.41	2.2	A	Regular
	brachiata	0.08	0.18	0.13	0.40	2.2	A	Random
	iera malabarica	0.17	0.18	0.03	0.37	2.2	A A	Random
	a coromandeliana	0.17	0.18	0.01	0.36	2.2		
	a coromanaeiiana m serratum				0.34	2.2	A	Regular
		0.08	0.18	0.08			A	Regular
	anthus patulus	0.08	0.18	0.07	0.34	2.2	A	Regular
	a acuminata	0.08	0.18	0.06	0.32	2.2	A	Regular
	ra trifolia	0.08	0.18	0.06	0.32	2.2	A	Regular
93 Rivea	hypocrateriformis	0.08	0.18	0.05	0.32	2.2	А	Regular

Continued

A A A A A A A A A	Regular Regular Regular Regular Regular Regular Regular Regular
A A A A A A A	Regular Regular Regular Regular Regular Regular
A A A A A A	Regular Regular Regular Regular Regular
A A A A A	Regular Regular Regular Regular
A A A A	Regular Regular Regular
A A A A	Regular Regular
A A A	Regular
A A	-
А	Regular
	Regular
Α	Regular
А	Regular
	A A A A A A A A A A A A A

81.4% species are falling under A Frequency class (1% – 20%), 6.98% species fall in B and C class category (21% – 40% and 41% – 60% respectively) and 4.65% in D class (61% – 80%) in semi evergreen. Moist deciduous showed 82.1% in A class, 8.3% in B class, 7.1% in C class followed by 1.2% in D & E class. In the case of Savannah 61% were in B, 28% in D and 11% in E class. Tables 3 and 4 given mentions a brief comparative statistics of frequency classes of which species. With regard to distribution pattern 107 species shows regular distribution pattern, 12 species shows random pattern and only one species shows contiguous pattern.

The number of species with reference to family dominance reveals that Caesalpiniaceae, Anacardiaceae, Euphorbiaceae and Sapindaceae were dominant among semi evergreen and Savannah type. Whereas in moist deciduous forest, Papilionaceae and Euphorbiaceae showed dominance with reference to family (Table 5).

Analysis of Raunkier's frequency classes revealed that most of the tree species had low frequency but the species are showing diversity pattern when analyzed in terms of Shannon Weiner index. The similarity index also revealed that species are showing low similarity in

Table 4. Raunkier's frequency class distribution	
for three forest types	

Forest type	No. in various frequency class	% of frequ- ency	Frequency class
Semi evergreen ¹	70	81.40	А
	6	6.98	В
	6	6.98	С
	4	4.65	D
Moist deciduous ²	69	82.1	А
	7	8.3	В
	6	7.1	С
	1	1.2	D
	1	1.2	Е
Savannah ³	11	61	В
	5	28	D
	2	11	Е

¹: A > B = C > D; ²: A > B > C > D = E; ³: B > D > E.

the three forest types further proving the diversity pattern in Mudumalai Wildlife Sanctuary. There seems to be a deviation between normal frequency class and regional

Table 5. List of species with reference to family dominance

Family name	SEG	MDF	Savannah
Anacardiaceae	62	8	2
Anonaceae	8	13	-
Apocynaceae	-	10	9
Araliaceae	5	4	1
Bignoniaceae	9	13	1
Bombacaceae	2	-	2
Burseraceae	25	8	-
Caesalpiniaceae	87	45	-
Capparaceae	4	-	-
Celastraceae	5	2	4
Clusiaceae	30	2	-
Combretaceae	27	29	19
Convolvulaceae	1	-	-
Dilleniaceae	8	5	-
Ebenaceae	19	20	5
Ehretiaceae	-	2	1
Euphorbiaceae	60	53	8
Flacourtiaceae	1	1	-
Flindersiaceae	-	1	-
Lauraceae	30	10	-
Lecythidaceae	-	3	-
Leeaceae	4	-	-
Loganiaceae	1	-	-
Magnoliaceae	27	4	-
Malvaceae	4	3	-
Meliaceae	24	15	-
Memecylaceae	1	3	-
Mimosaceae	6	32	-
Moraceae	14	4	-
Myrsinaceae	3	3	-
Myrtaceae	29	15	-
Oleaceae	7	4	-
Palmae	5	-	-
Papilionaceae	30	61	-
Piperaceae	5	-	-
Poaceae	1	-	-
Rhamnaceae	1	6	-
Rubiaceae	4	11	2
Rutaceae	1	4	-
Sapindaceae	64	19	-
Sterculiaceae	10	8	4
Tiliaceae	31	20	1
Ulmaceae	1	5	-
Verbenaceae	27	13	2

frequency class, the studies relevant to Raunkier's frequency distribution class will help in understanding the forest type diversity and dominance.

4 Conclusion

The quantitative characters with reference to density, diversity and frequency distribution could well act as indicators of anthropogenic disturbances that are affecting the various forest types and such studies would help in understanding the threats that are being faced by the tropical forests and would help in deriving conservation policies.

Acknowledgments

The authors are grateful to the Deputy Director, NRSA and Head, Forestry and Ecology Division, NRSA, Hyderabad for providing the facilities and Ministry of Environment and Forests, New Delhi for financial assistance to carry out the studies. Thanks are due to anonymous reviewers for valuable suggestions.

References

- Champion HG, Seth SK. Revised Survey of Forest Types of India, New Delhi. 1968.
- Curtis JT, Cottam G. Plant Ecology Workbook. Burgers Publishing Co., Minnesota 1962; 163.
- Gamble JS, Fischer CEC. Flora of Presidency of Madras. BSMPS, Dehra dun, India. 1915 – 1935.
- Ghate U, Joshi NV, Gadgil M. On the patterns of tree diversity in Western Ghats of India. Curr Sci 1998; 75(6): 594 – 693.
- Kadavul K, Parthasarathy N. Plant biodiversity and conservation of tropical semi evergreen forest in Shervarayan hills of Eastern Ghats, India. Biod Cons 1999; 8: 421 – 39.
- Kumar A, Bruce GM, Ajai S. Tree species diversity and distribution patterns in tropical forests of Garo Hills. Current Science 2006; 91: 1370 – 81.
- 7. Odum EP. Fundamentals of Ecology. Third Edition, Sounders, Philadelphia. 1971.
- Raunkier's frequency class sampling. www.iisc.ernet.in/currsci/ nov252006/1370.pdf.
- Reddy CS, Brahmam M, Raju VS. Conservation prioritization of endemic plants of Eastern Ghats, India. J Econ Tax Bot 2006; 30: 755 – 72.
- Reddy CS, Pattanaik C, Mohapatra A, Biswal AK. Phytosociological observations on tree diversity of tropical forest of Similipal Biosphere Reserve, Orissa, India. Taiwania 2007; 52(4): 1 – 8.
- Reddy CS, Prachi U, Murthy MSR, Sudhakar S. Quantitative structure and composition of tropical forests of Mudumalai Wildlife Sanctuary, Western Ghats, India. Taiwania 2008a; 53(2): 150 – 6.
- Reddy CS, Shilpa B, Giriraj A, Reddy KN, Rao KT. Structure and floristic composition of tree diversity in tropical dry deciduous forest of Eastern Ghats, Southern Andhra Pradesh, India. Asian Journal of Scientific Research 2008b; 1(1): 57 – 64.
- 13. Shannon CE, Weaver W. The Mathematical Theory of

Communication. The University of Illinois Press, Urbana IL. 1949.

- Sorenson T. A method of establishing groups of equal amplitude in a plant based on similarity of species content and its applications to analysis of vegetation on Danish commons. Biol Skr 1948; 5: 1 – 34.
- 15. Subba Rao GV, Kumari GR. Flora of Visakhapatnam district, Andhra

Pradesh. Botanical Survey of India. Kolkata. 2002.

- UNEP-CBD. Convention on Biological Diversity, (CBD). Secretariat on CBD, UN. Environment Programme, Montreal, 1991.
- 17. Whitford PB. Distribution of woodland plants in relation to succession and clonal growth. Ecology 1949; 30: 199 208.