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Abstract
Carbohydrate-binding modules have been shown to alter plant cell wall structural architecture. Hence, they have the 

potential application of being used to engineer the plant to produce tailor-made natural fibers in the cell wall. The Clos-
tridium thermocellum xylanase, Xyn10B, contains two carbohydrate binding modules (CBMs) that belong to family 22 
(CBM22). The C-terminal CBM22-2 of the glycoside hydrolase (GH) 10 had been characterized to interact with xylan, 
a major hemicellulosic component in the secondary cell wall of plants. In this work, the expression of the CBM22-2 in 
transgenic tobacco plants was evaluated. Histological examinations of the transgenic stems did not reveal marked cell wall 
phenotype. In addition, there were no observable changes in the height or the appearance of the transgenic plants express-
ing the CBM22-2 module. The results indicate that the family 22 carbohydrate binding module is not a potential candidate 
for use in planta modification of the cell wall. [Life Science Journal. 2008; 5(3): 14 – 18] (ISSN: 1097 – 8135).
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1  Introduction

Plant cell walls are dynamic, highly complex extra-
cytoplasmic matrix consisting of various polysaccha-
rides that interact with each other, through extensive and 
closely-knit networks (Neill and York, 2003). As a result 
of this intricate structure of the cell wall, access of cell 
wall degrading enzymes to their various target polysac-
charides is restricted (Hall et al, 1995). In order to over-
come this challenge, plant cell wall hydrolytic enzymes 
have evolved a complex modular architecture comprising 
a catalytic module appended to one or more non-catalytic 
carbohydrate-binding modules (CBMs) (Boraston et al, 
2004). The CBMs do not only bind the enzyme to the 
polysaccharides, thereby increasing the local concentra-

tion of the enzyme and leading to more effective degrada-
tion (Bolam et al, 1998; Gill et al, 1999). But some are 
also involved in substrate disruption and therefore, mak-
ing the substrate more available for the catalytic module 
(Din et al, 1994; Southall et al, 1999). 

The work of Din et al (1991) indicated that CBMs have 
potential in modification of natural fiber. They showed 
that modification of the polysaccharide structure could 
be achieved with isolated CBMs. It has been shown that 
CBMs can modulate cell wall structure (Obembe et al, 
2007a) as well as growth of transgenic plants (Kilburn 
et al, 2000; Obembe et al, 2007b; Quentin, 2003; Safra-
Dassa et al, 2006; Shoseyov, 2001). The expression of 
the CBM3 gene from Clostridium cellulovorans in potato 
plants (Safra-Dassa et al, 2006) and poplar tree plants 
(Shoseyov, 2001) was reported to enhance the growth rate 
of the transgenic plants. Similarly, Kilburn et al (2000) 
reported that transgenic plants expressing a mannan-
recognising CBM27 exhibited enhanced plant growth. 
However, a reduction in growth rate as well as delayed 
plant development was reported for transgenic tobacco 
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plants expressing the promiscuous CBM29-1-2 from a 
non-catalytic protein 1, NCP1, of the Piromyces equi cel-
lulase/hemicellulase complex (Obembe et al, 2007b).

The family 22 CBMs are often found with a family 10 
glycoside hydrolase catalytic module (GH10) (Devillard 
et al, 2003; Feng et al, 2000; Fontes et al, 1995; Sunna et 
al, 2000). Xylanase, Xyn10B from Clostridium thermocel-
lum (C. thermocellum) is a modular enzyme that contains 
two of such family 22 carbohydrate binding modules, one 
at the N-terminal (CBM22-1) and the other at the C-ter-
minal (CBM22-2) of the GH10 (Fontes et al, 1995). The 
C-terminal CBM22-2 was shown to interact with purified 
xylan through its Trp 53, Tyr 103, and Glu 138 (Xie et al, 
2001). It is of interest to note that members of the family 
CBM22 also exist in Arabidopsis and Populus (Henrissat 
et al, 2001; Suzuki et al, 2002; Kallas, 2006). 

 It had been previously suggested that specific CBMs, 
such as CBM22-2 could be used especially to prevent the 
binding of xylan to cellulose during biosynthesis, with a 
view to producing cellulose fibers with enhanced proper-
ties (Obembe, 2006). In this work, the effect of expressing 
the CBM22-2 in transgenic tobacco plants was investi-
gated.

2  Materials and Methods

2.1  Preparation of transformation construct
The CBM22-2 construct was prepared by amplifying 

the gene fragment from pET21a, recombinant plasmid 
vector used for cloning and expression in Escherichia 
coli (Xie et al, 2001). The polymerase chain reaction 
(PCR) was performed using primers that included Bam-
HI and SmaI recognition sites (5'- cgggatccgttcatgctac-
taactgttgtt-3' and 5'-tcccccgggccttttaattaattgcgtcatcgt-3'; 
the BamHI and SmaI sites, respectively, are underlined). 
The three bases highlighted in bold type are the stop 
codon. The amplified fragment of the tandem CBM22-2 
was digested with BamHI and SmaI (Invitrogen, The 
Netherlands) and cloned into a similarly digested bi-
nary vector pGreen7k (Hellens et al, 2000) as described 
(Obembe et al, 2007a).  Upstream of the expansin frag-
ment in the binary vector, two more gene fragments. 
The first sequence codes for a tobacco transit peptide for 
transporting a cellular glycoprotein NTP303 across the 
plasma membrane into the cell wall (Wittink et al, 2000), 
while the second sequence encodes a hexa-histidine tag. 
The tag was placed so as to facilitate affinity purification 
of the expressed protein. Cloning of these upstream com-
ponents was done as described by Obembe et al (2007a). 
The control construct did not contain any of the CBMs, 

the transit peptide and the hexa-histidine epitope tag. All 
constructs were sequenced to verify that the sequences 
encoding the transit peptide, hexa-histidine tag, and ex-
pansin CBM were in frame.

2.2  Tobacco transformation, regeneration and growth
The CBM22-2 construct and the empty vector control 

construct were used for Agrobacterium tumefaciens-
mediated transformation of in vitro leaf explants of Ni-
cotiana tabacum cv. Samsun NN as follows as described 
by Obembe at al (2007a). Thirteen transformed plantlets 
were transferred to the greenhouse to generate mature 
plants.

2.3  RNA gel blot analysis of transgenic plants
Total RNA was isolated from 3 to 5 g transformed 

in-vitro shoots as described elsewhere (Kuipers et al, 
1995). Separation of RNA on agarose gel, blotting onto 
a nylon membrane, hybridizing with labeled probes of 
CBM22-2 and the exposure of radioactively labeled to 
imaging films were carried out as described (Obembe et 
al, 2007a).

2.4  Light microscopy
Three individual plants per transgenic tobacco line 

and three wild-type plants, as control, were used for 
microscopic examination. Three transgenic lines were 
used (two high expressers and one low expresser). Stem 
sampling, fixing, embedding, sectioning and examina-
tion under a bright field microscope were carried out as 
described (Obembe et al, 2007a).

3  Results and Discussion

It has been shown previously that CBMs has the ca-
pabilities of being used to engineer the plant to produce 
tailor-made natural fibers in the cell wall (Obembe et al, 
2007b). To express the C. thermocellum-derived xylan-
binding module in tobacco plants, the CBM22-2 gene 
was cloned into a binary plasmid pGreen7k, the expres-
sion of which was driven by the CaMV 35S promoter. 
The plasmid pGreen7k without the CBM gene was used 
as a vector control. Thirteen antibiotic-resistant tobacco 
transformants carrying the CBM22-2 transgene were 
regenerated and transferred to the greenhouse. Total 
RNA from leaves of the transgenic plants was isolated 
to analyze the expression level of the C. thermocellum 
CBM22-2 in each transgenic line by Northern blot analy-
sis using tobacco 18S ribosomal RNA gene as a control. 
Varying hybridization intensities with the transgenic 
plants revealed differential expression of the CBM22-2 
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gene in the individual plants. Based on the level of ex-
pression, transgenic plants have been categorized into 
three classes as high, low and none expressers; the re-
spective representatives for the classes are shown in Fig-
ure 1. Five plants each were classified as high and low 
expressers, whereas three plants were classified as none 
expressers. It should be noted that these none express-
ers may include plants with very low RNA expression, 
which could not be detected. Attempts at purifying the 
protein of the CBM22-2 module using affinity purifica-
tion with hexa-histidine tag were not successful for rea-
sons previously discussed (Obembe et al, 2007b).

The transgenic plants appeared normal in that there 
was no morphological or developmental change when 
compared to the pGreen7k vector control. The aver-
age plant height of the transgenic plants expressing the 
CBM22-2 at maturity was 73 cm, which was comparable 
to 75 cm average height for the pGreen7k vector control 
plants. There was also no particular trend in plant devel-
opment with respect to stem elongation and flower for-
mation.

To determine whether there were cellular events re-
sulting from the expression of the CBM22-2 in the tobac-
co plant, light microscopic examinations of stem sections 
stained with toluidine blue was made. Three representa-
tives of each expression class were examined. Figure 2 
showed representative micrographs of the cortex of the 
transgenic and the control stems, which reveal no marked 
cellular phenotype in the transgenic stems. One argument 
for the unexpected result could be that there had been    

 

Figure 1. Transcript expression analysis of the CBM22-2 gene in 
transgenic tobacco leaves. A differential transcript expression pat-
tern is shown in the upper panel with the representative of each 
class in the transgenic line CBM22-2. Lines 10, 7 and 3 represent 
high, low and none expressers, respectively. Lower panel shows 
RNA blots for the ribosomal RNA internal control with compa-
rable intensities.

some sort of post-translation silencing. This is especially 
suggestive, since the transcript expression analysis was 
good. This argument apparently appears strong when one 
considers the evidence of xylan-binding attribute of the 
CBM22-2, on which the present investigation was pre-
mised. The evidence was based on in vitro binding and 
site directed mutagenesis studies (Charnock et al, 2000; 
Xie et al, 2001). However, recent immunohistochemical 
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Figure 2. Cross sections of representative transgenic and control stems. Sections of the transgenic line 10, high expresser of CBM22-2 
module (A) and empty pGreen7k control (B) were stained with toluidine blue. Figures 2A and 2B show the cortex of the sections of the 
transgenic and the control plants, respectively. Figures reveal no marked difference in the cortex of the two stem sections. ct = cortex, ep = 
epidermis, Scale bar = 50 µm.
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evidence provided by McCartney et al (2006) gave new 
insight as to why the transgenic plants did not exhibit 
marked cellular phenotypes. In their approach, recom-
binant CBMs, which were fusion proteins of the CBMs 
and histidine tags, were used as molecular probes to 
localize their ligands in planta. The detection of the poly-
saccharide-CBM interactions within the plant cell wall 
was facilitated with the use of anti-histidine antibodies 
against the histidine tags. The investigation revealed that 
CBM22-2 has restricted secondary cell wall recognition; 
in that whereas it bound effectively to pea stem, it only 
bound weakly to flax and tobacco stems (McCartney 
et al, 2006). This likely reflects the context of xylan in 
different cell walls (McCartney et al, 2006), especially 
since CBM22-2 can readily recognize isolated xylan 
polymers and also because xylan was found to be present 
in all of the secondary cell walls of the plant materials 
used, as indicated by the binding of other xylan-binding 
CBMs. 

4  Conclusion

Although it is well established that CBMs are ca-
pable of altering plant cell wall structure and could be 
potentially used as a tool for tailoring cellulose fiber 
with enhanced properties for specific industrial applica-
tions, it is strongly suggested that their appropriateness 
for such as task should be empirically determined. This 
study suggests that the CBM22-2 of xylanase 10B of the 
C. thermocullum might be not suitable for use in planta 
modification of cellulose fiber.
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