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Abstract: Excessive input of heavy metals in water reservoir and cultivated land primarily affect the growth and 

yield of crops. The aim of this work was to study the mechanism of Cd tocixity and damage to photosynthetic 

pigments and their efficiency and the potential of natural and synthetic chelators in assisting the phytoextractor 

sunflower plant. The pot experiment was laid out in a complete randomized way for Cd, chelators and hybrids at 

seedling, vegetative and reproductive stages with three replications. Cd affects the gas exchange parameters directly 

or indirectly by effecting the light and dark reactions, while indirect effect include inhibition of chlorophyll and 

carotenoids biosynthesis and degradation and alteration in Chl a/b ratio. Among two chelators, natural chelator OA 

found to be very supportive in ameliorating the Cd tocixity by phytoextractor in assistance to sunflower hybrid 

Hysun-33. 
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Introduction 

         Environmental pollution has become a serious 

problem at global level due to human activities 

(Koptsik et al., 2003; Jarup, 2003). Urbanization and 

industrialization is proving hazardous to environment 

due to greater production of industrial wastes 

especially metallic elements (Wei and Yang, 2010; 

Yaylalı-Abanuz, 2011; Mireles et al., 2012).  

Among metals, cadmium (Cd) is the most 

toxic pollutant of water, soil and atmosphere (Ranieri 

et al., 2005). Naturally it occurs in soil due to 

weathering of sedimentary parent rocks (Alloway, 

1995). It exists in the form of sulphides, oxides, and 

carbonates in lead, zinc and copper ores (Anonymous, 

2010). The industrial sources include phosphate 

fertilizers, nickel–cadmium batteries, pigments, 

plastics, ceramics and solar cells. The major culprits 

are phosphate fertilizers, Cd containing municipal 

waste and sewage sludge (ECB, 2007; Kabata-Pendias 

and Mukherjee, 2007; ATSDR, 2008). Other sources 

include burning of fossil fuels, mine tailings, waste and 

slag of smelter and urban refuse (Anonymous, 2010). 

The irrigation of agricultural land with Cd 

containing waste water reduced the concentration of 

photosynthetic pigments such as chlorophyll a, 

chlorophyll b, total chlorophyll and carotenoids (Van 

Assche and Clijsters, 1990; Krupa et al., 1996; Yang et 

al., 1996a; Macfarlane and Burchett, 2001; Tantrey and 

Agnihotri, 2010; Pooja et al., 2012). Exposure of plants 

to Cd causes leaf chlorosis which is most simple and 

visual indicator of toxicity of Cd (Hsu and Kao, 2003) 

as it disrupts the structure and function of chloroplast 

by inhibiting the functioning of chlorophyll 

biosynthesizing enzymes (Boddi et al., 1995; Krupa 

and Baszynski, 1995; Siedlecka et al., 1997; Pence et 

al., 2000). 

The higher Cd concentrations decreased the 

photosynthetic activity (Kovacs et al., 2005) by 

reducing chlorophyll synthesis, by reacting with 

porphobilinogen deaminase and d-ALA dehydratase –

SH group, resulting in prophyrins and ALA (the 

intermediates of cholorophyll biosynthesis) (Padmaja 

et al., 1990; Shakya et al., 2008) and by producing 

chlorophyllide through protochlorophillide 

photoreduction (Stobart et al., 1985). 

Chelating agents either synthetic (EDTA, DTPA, 

HEDTA) or natural (oxalic acid, citric acid, acetic acid) 

are commonly used as amendments to induced 

phytoextraction (Nascimento et al., 2006). EDTA is the 

most extensively used synthetic chelator for induced 

phytoextraction which dissolves the bonds between the 

metal and soil particles and promotes metal solubility 

and bioavailability for easy uptake by plants (Jean et 

al., 2008; Saifullah et al., 2009). Although the practice 

of using synthetic chelators such as EDTA, DTPA is 

very effective for phytoextraction of metals but their 

persistence in soil and low rate of degradation increases 
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the risk of metals leaching and contamination of 

ground water (Luo et al., 2005; Saifullah et al., 2009) 

Oxalic acid is a cheap environment friendly and 

quickly biodegradable natural chelator that can be used 

in phytoextraction without having a danger of metal 

leaching and contamination of ground water (Wu et al., 

2003a; Niu et al., 2011). Its efficient role in Cd 

mobilization, translocation and phytoextraction has 

been extensively observed (de Melo et al., 2008; 

Oustan et al., 2011).  

 

Materials and methods  

A pot experiment was performed in Old 

Botanical Garden, University of Agriculture, 

Faisalabad, Pakistan. The prevailing climatic 

conditions at the time of experiment were 34 °C with 

66% relative humidity in month of July 2015. Pots 

were filled with 10 kg soil and properly irrigated with 

water for maintaining suitable moisture content. Ten 

surface sterilized achenes (with 0.1% mercuric 

chloride) of two sunflower hybrids (Hysun-33 and FH-

533) were sown at 1 inch depth in plastic pots.  

Treatments i.e. 0, 250 and 450 mg Cd/kg soil along 

with and without EDTA and OA @ 1g/kg soil each 

were applied in the rooting medium. Experiment was 

completely randomized with three factors factorial and 

three replications. After complete germination, four 

plants were kept for determination of chlorophyll and 

carotenoids pigments and gas exchange attributes. All 

the physiological and photosynthetic attributes were 

determined at seedling, vegetative and reproductive 

stages of plants 

 Gas exchange parameters includes net 

assimilation rate (A), transpiration rate (E), sub-

stomatal CO2 concentration (Ci), stomatal conductance 

(gs) and water use efficiency (A/E) were measured 

from  a fully expanded youngest leaf by using an open 

system LCA-4 ADC portable infrared gas analyzer 

(Analytical Development Company, Hoddeson, 

England). The specifications /adjustments of  IRGA 

were as follows: leaf surface area 11.35 cm3, ambient 

CO2 concentration (Cref) 342.12 µmol/mol, 

temperature of leaf chamber (Tch) varied from 39.2 to 

43.9oC, leaf chamber volume gas flow rate (v) 396 

ml/min, leaf chamber molar gas flow rate (U) 251 

µmol/sec, ambient pressure (P) 99.95 kPa, molar flow 

of air per unit leaf area (Us) 221.06 mol/m2/sec, PAR 

(Q leaf) at leaf surface was maximum up to 918 

µmol/m2.  

The concentration of chlorophyll (a, b and 

total) was calculated following the method of Arnon 

(1949) and whereas carotenoids were calculated 

following the method of Davis (1976). Fresh leaves 

(0.2 g) were grind well and extracted in 80% acetone at 

- 4oC. The extract was centrifuged at 10000 rpm for 

five minutes at 4 °C. The optical density of the 

supernatant was measured at 663, 645 and 480 nm on 

spectrophotometer (Hitachi-220 Japan).  

 

Results 

a. Photosynthetic Pigments 

 The chlorophylls concentration (chl-a, chl-b, 

Total) significantly reduced in the presence of Cd in 

growth medium in both hybrids. Hybrids varied 

significantly at all three growth stages. FH-533 showed 

maximum reduction of 91.89% in chlorophyll-a 

contents (chl-a) by application of 450 mg Cd/kg at 

seedling stage while in Hysun-33 this reduction was 

66.66% respectively as compared to control. EDTA 

alone significantly affected chl-a at reproductive stage 

and caused 12.12% and 13.63% reduction in chl-a 

content of Hysun-33 and FH-533 respectively (Fig. 1). 

The OA alone significantly reduced 335.55% chl-a in 

Hysun-33 and 16.21% in FH-533 only at seedling stage 

(Fig. 1). Cadmium addition @ 250 and 450 mg/kg in 

growth medium in the presence of 1g EDTA/kg 

imposed more severe effects on photosynthetic 

pigments of FH-533 than Hysun-33 as compared to 

control treated plants at vegetative and reproductive 

stages (Fig. 1). Cd x OA interaction was significant for 

seedlings of two hybrids. In the presence of 1 g OA/kg 

soil maximum reduction was observed in combination 

with 450 mg Cd/kg soil which caused reduction in 

chlorophylls and carotenoids contents of Hysun-33 and 

FH-533 respectively (Fig. 1).   

b. Gas Exchange Attributes 

Statistical analysis revealed that cadmium 

significantly affected the photosynthetic rate (A), 

transpiration rate (E), stomatal conductance (gs) and 

sub-stomatal CO2 concentration (Ci) of treated plants at 

all three stages i.e. seedling, vegetative and 

reproductive stages. EDTA and OA alone had 

significant effects on gas exchange attributes only at 

seedling stage. Hybrids differed significantly 

throughout the studied period; Hysun-33 had better A, 

E, gs and Ci as compared to FH-533. Cadmium 

application @ 250 and 450 mg Cd/kg resulted in 

decrease of gas exchange attributes at seedling stage 

and this reduction was greater at reproductive stage of 

both the hybrids. EDTA significantly reduced the 

physiological attributes at seedling stage in both the 

selected hybrids i.e., Hysun-33 and FH-533 but found 

significant at reproductive stage for Ci. Cd x EDTA 

interaction was also significant for these parameters at 

seedling stage, so the addition of EDTA @ 1 g/kg in 

growth medium containing 250 and 450 mg Cd/kg 

slightly affected them as compared to Cd alone (Fig. 

2). OA impact alone was statistically significant at 

vegetative and reproductive stage of two hybrids for Ci 

and OA plus Cd interactive effect was proved 

significant for A, E and gs only at seedling stage. The 

impact of OA alone was mild as compared to combined 
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application with Cd and 1 g OA/kg + 450 mg Cd/kg 

affected the gas exchange attributes of two hybrids 

greater than 1 g OA/kg + 250 mg Cd/kg respectively 

(Fig 2-3).   

From analysis of variance it is clear that all 

the main factors i.e., Cd, OA and EDTA proved non-

significant alone and in combination for water use 

efficiency of sunflower hybrids throughout the studied. 

Only significant factor was hybrid at seedling stage. 

Minimum water use efficiency (1.11) μmol CO2/mmol 

H2O was measured in FH-533 under 250 mg Cd/kg 

application at vegetative stage and maximum (3.19) 

μmol CO2/mmol H2O was maintained by Hysun-33 

under 250 mg Cd/kg application at seedling stage.  

All the interactions for hybrids, Cd and 

chelating agents remained statistically non-significant 

for pigments and gas exchange attributes at seedling, 

vegetative and reproductive stages.  

 

Discussion   

a. Pigments  

Reduction in the concentration of 

photosynthetic pigments such as chl-a, chl-b, chl-T and 

accomplice pigments like carotenoid has been found a 

common symptom of metal toxicity in a number of 

species (Van Assche and Clijsters, 1990; Krupa et al., 

1996; Macfarlane and Burchett, 2001; Tantrey and 

Agnihotri, 2010; Pooja et al., 2012). Decline in 

photosynthetic pigments (Chlorophyll a, b and 

carotenoids) was noticed in sunflower under stress 

condition (Haseeb et al., 2015). Exposure of plants to 

Cd causes leaf chlorosis which is most simple and 

visual indicator of Cd toxicity (Hsu and Kao, 2003). 

During present study Cd caused significant 

reduction in chlorophyll a, chlorophyll b, chl-T and 

accomplice pigment carotenoids especially in first 

harvest of study. Both chealtors i.e., EDTA and OA 

helped in reducing the damaging effects of Cd on 

pigments; however OA had given more assistance in 

ameliorating the damaging effects of Cd than EDTA. 

The sensitive hybrid FH-533 experienced more 

reduction in pigment contents than Hysun-33 (Fig. 4.50 

to 4.57). The present results are in accordance with 

previous findings of Miao et al. (2012) who 

documented better pigment status of Arundo donax L. 

in the presence of chelating agent i.e., EDTA growing 

in Cd, Pb and arsenic contaminated soil. Markovska et 

al. (2013) also reported the improving effects of EDTA 

on photosynthetic pigments of Tribulus terrestris.  

Chen et al. (2011b) reported that increasing Cd levels 

in soil decrease the total chlorophyll of plants. 

Similarly in pea plants the negative relation observed 

between chlorophyll a, b and carotenoid level and Cd 

concentration (Al-Hakimi, 2007). 

The results can be defended by the argument 

that the better pigment status in chelators treated plants 

might be the result of increased concentration of Fe in 

the shoots which have influence on chlorophyll b 

structure furthermore formation of metal-chelator 

complex which is incapable to penetrate the 

membranes of plant hence chelators decrease the metal 

mobility and then its toxicity (Ruley et al., 2006). 

Cadmium reduced the chlorophyll 

concentration (Vijayaragavan et al., 2011; Touiserkani 

and Haddad, 2012) by removing the Mg ion from its 

binding position in chlorophyll (Kupper et al., 1995) 

resulting in degradation of chlorophyll molecule (Otero 

et al., 2006) or by inhibiting the activities of enzymes 

involved in cholorophyll biosynthesis like 

protochlorophyllide reductase (Mysliwa-Kurdziel et 

al., 2004) porphobilinogen deaminase (Walley, 2005) 

aminolevulinic dehydratase (Noriega et al., 2007) thus 

causing deficiency in Fe2+ and Mg2+ supply necessary 

for chlorophyll synthesis, and also causing inhibition of 

carbonic anhydrase activity due to Zn2+ scarcity (Van 

Assche and Clijsters, 1990). 

Broadly, in interpretation of the high redox 

potential of Cd it is interpreted that during biosynthesis 

of photosynthetic pigments the reductive steps are 

inhibited due to Cd stress. In addition the activity of 

vital enzyme protochlorophyllide reductase, responsive 

for protochlorophyll reduction into chlorophyll known 

to be repressed (De Filippis and Pallaghy, 1994). 

b. Gas exchange parameters  

In the present investigated study 

photosynthetic rate (Pn), transpiration rates (E), 

stomatal conductance (gs) and substomatal CO2 

concentration (Ci) were decreased and water use 

efficiency (WUE) increased under the treatment of Cd, 

EDTA and OA in combination or by their separate 

application in all harvest but this increasing and 

decreasing pattern in gas exchange parameters were 

more dominating during first harvest time. These trends 

are more pronounced when Cd was separately added in 

growth medium. According to present findings EDTA 

and OA application along with Cd helped in improving 

the gas exchange parameters of sunflower hybrids. The 

comparison between chelating agents showed that OA 

proved more helpful in reducing the adverse effects of 

Cd on gas exchange parameters than EDTA (Fig. 2). 

The results of present research work are in line with the 

findings of Markovska et al. (2013) who reported 

improvement in gas exchange parameter i.e., Pn, E, gs, 

Ci and WUE under the influence of EDTA of Tribulus 

terrestris growing in metal contaminated soil. In 

present study the improved efficiency of gas exchange 

parameters by chelators (EDTA, OA) application might 

be due to formation of chelate with Cd which reduced 

the noxious effects of Cd as also reported by (Chen and 

Cutright, 2001). Markovska et al. (2013) also reported 

the beneficial effect of EDTA on gas exchange 

parameters including transpiration rate, stomatal 
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conductance and net photosynthetic rate. Transpiration 

is a vital process for the enhancement of water soluble 

components or uptake of contaminants and flux to the 

upper plant parts.  The greater WUE in (Cd+chelator) 

treated plants can be interpreted as plants effort to 

improve their water regime.  Improved WUE is largely 

a meaning of reduced water use then overall/net 

improvement in production of plant or biochemistry of 

assimilation (Baszyfiski et al., 1980). 

Some previous investigations showed the 

negative effects of Cd on Pn, E and Ci in Brassica 

napus (Wan et al., 2011), Pea and barley 

(Januskaitiene, 2010), Maize (Krantev et al., 2008). 

Reduction in photosynthetic rate due to Cd toxicity 

might be the result of reduction in chlorophyll contents 

by its reaction with porphobilinogen deaminase and d-

ALA dehydratase –SH group, resulting in prophyrins 

and ALA the intermediates of cholorophyll biosynthsis 

(Padmaja et al., 1990; Shakya et al., 2008) by 

producing chlorophyllide through protochlorophillide 

photoreduction (Stobart et al., 1985). In mitochondria 

and chloroplast for heme and chlorophyll synthesis 

ALA formation is the rate controlling and regulating 

step during tetrapyrrole biosynthetic pathway (Porra 

and meisch, 1984). Cd restricts ALA synthesis (Parekh, 

1990) reduce the chlorophyll synthesis and many other 

photosynthesis related reactions (Marschner, 1983; 

Siedlecka and Baszynski, 1993) by causing Fe 

insufficiency (Marschner, 1983). The heme and 

chlorophyll biosynthesis is interrupted by Cd, as it 

reacts with the –SH functional groups like ALA 

dehydratase, ALA synthase, protochlorophyllide 

reductase and PBG deaminase (Prasad and Prasad, 

1987). 

Previous reports confirmed the increase in 

transpiration rate of plants due to low Cd levels, which, 

however, decreased due to higher Cd concentrations. In 

Phragmites australis 50 µM Cd had no effect on this 

parameter, however it decreased under 100 µM Cd 

treatment (Pietrini et al., 2003). Higher Cd 

concentrations caused structural abnormalities in 

stomata resulting in rudimentary flawed stomata with 

reduced size and number, leading to depreciate 

stomatal conductance and modified rate of transpiration 

(Perfus-Barbeoch et al., 2002; Greger and Johansson, 

2006; Kaznina, et al., 2011). 

Under high Cd stress plants close their 

stomata to decrease the transpiration rate (Greger and 

Johansson, 2006). Its physiological explanation is that 

plants store the water reserves when Cd limits the 

water uptake efficiency through roots (Veselov et al., 

2003) 

Cadmium (10 and 100 µM) affects the gs in 

tomato plants (Lopez-Millan et al., 2009). The 

defective stomata of Cd stressed plants do not function 

appropriately (Greger and Johansson, 2006) so inverse 

proportion found between increasing Cd concentration 

and decrease in gs (Dong et al., 2005).  

Cadmium disturb the water relations of pea 

plants and reduce the WUE and consequently caused 

reduction in water uptake and its translocation to above 

ground parts (Singh et al., 2008). Contradictory reports 

were documented by Januskaitiene (2010) that WUE 

increased as a result of more suppression in 

transpiration rate than Pn. 

Present results advocate that Cd may have a 

straight inhibitory influence on stomatal closing and 

opening that may lead to reduced stomatal conductance 

thus disturbing gasses exchange and eventually cause 

reduction in photosynthetic rate (Vassilev et al., 2004). 

Higher Cd concentration has also been reported to 

result in photosynthetic inhibition nonspecifically due 

to smashed structure of chloroplast (Fediuc and Erdei, 

2002), impaired chlorophyll synthesis or its elevated 

breakdown (Baryla et al., 2001), disturbed electron 

transport chain (Krupa et al., 1996), diminished 

activities of enzymes of Calvin cycle (Vangrosveld and 

Clijsters, 1994) and CO2 deficiency in chloroplasts due 

to stomatal closure (Singh and Singh, 1987; Chen et 

al., 2011).This can eventually results in severe decrease 

in photosynthetic rate under Cd stress as observed in 

present study. Furthermore, the K ion concentration 

drops down by elevation in external Cd concentration. 

It is now well reported that K is a crucial nutrient 

required for stomatal regulation (Taiz and Zeiger, 

2006). The decrease in K concentration, as experienced 

in present investigation could directly modify the K 

fluxes through membranes of guard cell thus imiting 

the stomatal conductance and finally photosynthesis 

(Sharma and Agrawal, 2005). 

 

Conclusion 

Cd affects the gas exchange parameters 

directly or indirectly by effecting the light and dark 

reactions. The direct effect of Cd on light reactions is 

on photosynthesis O2 evolution, photophosphorylation 

and reduction of NADP, while indirect effect include 

inhibition of chlorophyll biosynthesis and degradation 

and alteration in Chl a/b ratio. 
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Fig 1. Effect of 250 and 450 mg/kg Cd along with EDTA (1 g/kg) and OA (1 g/kg) on 

pigments concentration of two sunflower hybrids (HYSUN-33 and FH-53) at seedling, 

vegetative and reproductive stages.  
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Fig 2. Effect of 250 and 450 mg/kg Cd along with EDTA (1 g/kg) and OA (1 g/kg) on net 

assimilation rate (A), transpiration rate (E) and water use efficiency (A/E) of two sunflower 

hybrids (HYSUN-33 and FH-53) at seedling, vegetative and reproductive stages. 
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Fig 3. Effect of 250 and 450 mg/kg Cd along with EDTA (1 g/kg) and OA (1 g/kg) on sub-

stomatal CO2 concentration (Ci) and stomatal conductance (gs) of two sunflower hybrids 

(HYSUN-33 and FH-53) at seedling, vegetative and reproductive stages. 
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