

http://www.jofamericanscience.org editor@americanscience.org

35

Another Approach in Building a Secure Server OS, Based on Using Virtualization

Seyyed Mohsen Seyyedsalehi 1, Shahriar Mohammadi 1, Seyyedeh Fatemeh Malek 2

1. K.N.Toosi University of Technology,Tehran, Iran
2. Amirkabir University of Technology,Tehran, Iran

seyyedsalehi@gmail.com

Abstract: In this paper the issue of building a secure operating system, as the most important system software, is

discussed. Securing operating systems have mainly two traditional approaches: First is reviewing and making secure

configurations, and the second is disabling unnecessary services. In this research, these two approaches are reviewed,

then the third approach will be presented. In this new approach the important system services will run in isolated

virtual machines. Separated services greatly reduce the risk of attack and increase security of operating system. One

of the most important benefits of our new approach is the minimal cost of implementation by using the recently

available virtualization technologies.

[Seyyedsalehi SM, Mohammadi S, Malek SF. Another Approach in Building a Secure Server OS, Based on

Using Virtualization. J Am Sci 2023;19(6):35-43]. ISSN 1545-1003 (print); ISSN 2375-7264 (online).

http://www.jofamericanscience.org 06.doi:10.7537/marsjas190623.06.

Keywords: Secure operating system; virtualization; linux; performance

1. Introduction

Security is important when you have valuable

assets that are mentioned to be protected from any

damage. In safe operating systems related problems and

solutions first you must specify which assets are

valuable, and how much they are sensitive. Our

valuable properties in this concept are usually made of

data and information. In almost all information systems

our important assets are placed on OS. As shown in

table 1, it can briefly be said:

Table 1. Security of OS & applications

Result status

Insecure system Insecure operating system + insecure applications

Insecure system Insecure operating system + secure applications

relatively secure

system
secure operating system + insecure applications

secure system secure operating system + secure applications

Looking at a higher level if the operating system wants to provide security, it should have the following

controls:

• Control of who can run a program.

• Control of which libraries can called by a program.

• Control of which code into a library program is executed.

And also,

• Control of which data can changed by a program.

Providing above controls in detail isn’t possible because of the extent of the issue, but there are useful strategies that

will be surveyed. After that, a new idea for more secure operating system is offered.

http://www.jofamericanscience.org/
mailto:editor@americanscience.org
mailto:seyyedsalehi@gmail.com
http://www.jofamericanscience.org/
http://www.dx.doi.org/10.7537/marsjas190623.06

http://www.jofamericanscience.org editor@americanscience.org

36

2. The Problem

Operating system security criteria, as a

common practical standard, hasn’t been documented yet.

Only an effort called IEEE Baseline Operating Systems

Security ™ in this context was found. The standard had

begun to determine the characteristics of a safe

operating system, but the project already suspended in

IEEE and it’s last update has been in 2006. Currently,

creating and maintaining a secure operating system by

using available technologies is the main security

concern of many countries. Doing it from scratch isn’t

economic therefore there is no choice except

Underlying existing products. In this regard, there are

two choices among available technologies:

1. The commercial operating systems as the base of

secure OS: Due to lack of access to code and

functions, we can’t work deeply on securing of

these OS’s. On the other hand this group of OS’s

because of belonging to a particular company, like

Windows that offered by Microsoft company, is

not desirable for many countries.

2. The open-source operating systems as the base of

secure OS: Since code of these OS’s is fully

available we can be aware of all details to make

them secure. Also there is no restriction in adding

new security features to such an open operating

systems. The most noteworthy open source OS is

Linux. Linux family made of lots of distributions.

One of the most popular distributions of Linux is

Ubuntu. We choose Ubuntu for implementing the

ideas presented in this article. Mint, Mageia,

Fedora, OpenSUSE and Debian are other popular

distributions that our idea is Implementable on

them.

It may come to mind that if an updated

anti-virus exists, there is no need to have special

security features in operating system. Two replies can

be raised for answering these doubts [1]:

1. Zero-day attacks: When a virus is widely

reported, the virus definition is added to

anti-viruses. But experience has shown that in the

gap, caused by an antivirus detection delay,

systems have a lot of sacrifice.

2. Targeted attacks: attacks aimed at specific

organization as a target couldn’t be identified by

anti-viruses because the specific virus definition

hasn’t been published. So it seems that despite all

the measures done, still it’s necessary to secure

your operating system.

SANS, one of the institutions of security

training has analytical reports in the field of

information security. According to the reports,

nowadays the most vulnerable areas of operating

systems are: web applications, backup softwares,

antivirus softwares, database softwares, messaging

softwares, servers provide voice over IP.

3. Related Works

Overally, securing operating system includes

two following strategies: First is reviewing all

configurations and securing them based on previous

attacks experiences. The second is disabling

unnecessary services in OS. In continue, these two

approaches are briefly explained:

Reviewing all configurations and securing

them based on previous attacks experiences: For

this purpose, automatic tools can be used for making

suitable configurations. A sample of automatic tools is

Bastille Linux [18]. The Bastille Hardening program

locks down an operating system, proactively

configuring the system for increased security and

decreasing its susceptibility to compromise. Bastille can

also assess a system's current state of hardening,

granularly reporting on each of the security settings

with which it works. Also the configuration can be done

by the professional user instead of automatic tools. In

next paragraphs we have a survey of some available

secure configurations in different parts of OS:

Securing remote connections: For this purpose

we must put away clear text transmission and use SSH,

the abbreviation of Secured Shell, in remote

connections in order to have a secure transfer of

information. SSH uses the RSA algorithm.

Tunneling and securing communication

infrastructures: OpenSSL is the open source

implementation of the SSL standard by Netscape

company. It is suitable to make secure communications

regardless of data type. Stunnel is an open-source

program, used to provide universal TLS/SSL tunneling

service. Tunneling in a simple definition is: packaging

data packets of a protocol in packets of other protocols.

In this debate usually the first protocol is non-secure

and the second protocol is secure.

Securing domain name server (DNS) : One of

the main services which servs Internet web sites, is the

translation service of common and familiar names to

their IP addresses. This service, due to being global and

it’s recursive property, has been much noticed by

hackers [1]. Recursive property is the recursive attempt

of main name server to achieve IP of received name if it

hasn’t it itself. The process result in answering the

request which had come to domain name server. For

having a secure name server two principles should be

considered: Never give additional information to

strangers and keep each software package, you use to

provide the DNS service, updated. Translation of two

above principles to technical language is; Disable or

limit recursive property of DNS; Attacks, such as

cache poisoning, are placed on this property. Another

http://www.jofamericanscience.org/
mailto:editor@americanscience.org

http://www.jofamericanscience.org editor@americanscience.org

37

hint is using split DNS.

Securing email service: Security of email

service like other services on the network is important.

Some of the malicious uses of these services reported

includes [1]: eavesdropping confidential information

which is transmitted via email, sending huge volume

of letters to an individual, sending email with forged

sender to deceive, publishing virus, illegal access to

email server to get other attacks, publishing spam.

Implementing an email service needs two agents; MTA

and MDA. In each case there are some softwares that

we can choose and use them securely.

Securing web service: Table 2 shows the

security goals of a web server and their failure factors.

Table 2. Security goals of a web server & their vulnerabilities

Security goals Vulnerabilities

System integrity

 Theft of service

 Pirate servers and applications

 Password sniffing

 Rootkit and trojan program

 DoS targeting or participation

Data integrity
 Vandalism, data tampering or site defacement

 Inadvertent file deletion or modification

Data confidentiality
 Theft of personal information

 Leakage of personal data into URLs and logs

System and network

availability

 Unauthorized use of resources

 DoS & DDoS attacks

 Crash or freeze from resource exhaustion

For each vulnerability of table 2 necessary measures should be done, which is beyond of this article.

Securing database: The most popular database

in servers based on Linux is MySQL. Securing database

server, in comparison with email server or web server, is

less complicated. Security problems that may be occur

for the database include: data theft or loss of data or

DoS attack on the database. One common attack in

databases is SQL injection which the hacker attacks by

injecting special statements. The hacker injects codes

such as Perl or PHP scripts or any other languages in

order to access confidential information. To prevent

these attacks some measures can be done. Some of these

client-side measures include: check all input variables

in the language or limit the illicit characters of the script

or check maximum size of inputs. Also we can use

intrusion detection softwares in the server side.

Disabling unnecessary services: This

approach depends on each case, and a common

solution for all cases can’t be presented. Here some

global guidelines, which are collected from various

references, will come in the following:

 Whatever is not explicitly permitted is prohibited.

 None of users should have powers more than

what he needs for doing his duty [3].

 None of applications should have powers more

than what he needs for doing his task. (This

principle is a kind of generalized principle

before.)

 Only install necessary softwares. Any other

software should be deleted or disabled.

 Prohibit any unnecessary shell access to OS.

 None of services should be publicly available by

default. If it is required to enable a specific

service for all, it can be done but not by default

and for all services.

 Applications which provide service to the public

shall be run in the chrooted file system. An

executable file without any reason should not

have administrator access level.

Until now we had a survey of existing solutions

for securing servers. In next part we explain a

different solution.

4. Impelementation

In this approach, we will try to isolate the

major services of OS; Therefore, we can restrict any

intrusion or damage to any part of operating system

with minimum effect on the other parts. This idea has

been tested that the creation of virtual machines in a

system can prevent from spreading viruses and

malicious codes to the whole system [4] .

For making this structure we need some kind of

virtualizing. In the overall approach, there are three

main virtualization technologies:

 Full virtualization

o Bare metal (or native) virtualization [20]

o Hosted virtualization [20]

 Paravirtualization

 Operating system-level virtualization (or

http://www.jofamericanscience.org/
mailto:editor@americanscience.org

http://www.jofamericanscience.org editor@americanscience.org

38

container)

The three techniques differ in complexity of

implementation, breadth of OS support, performance in

comparison with standalone server, and level of access

to common resources. For example, full virtualization

have wider scope of usage, but poorer performance.

Paravirtualization have better performance, but can

support fewer OSs because one has to modify the

original OS. Virtualization on the OS level provides the

best performance and scalability compared to other

approaches. Performance difference of such systems

can be as low as 1 to 3%, comparing with that of a

standalone server [9]. Comparison of these three

technologies is shown in table 3 [5].

Table 3. Comparision of virtualization technologies

performance complexity Flexibility virtualization technology

low low Any OS Full virtualization

Medium

high

Any OS with some

limitations
Paravirtualization

High high

Host & guest must be the

same (different

distributions are

accepted)

OS-level virtualization

 For implementing the idea of jail (another name

for isolated VM) in Ubuntu operating system, all three

above methods have been tested. The results will come

in the follow:

 Full virtualization: There are two forms of full

virtualization. In bare metal virtualization, also known

as native virtualization, the hypervisor runs directly on

the hardware, without a host OS. In the other form of

full virtualization, known as hosted virtualization, the

hypervisor runs on top of the host OS; the host OS can

be almost any common operating system such as

Windows, Linux, or MacOS [20]. The most suitable

software for implementing this method in Ubuntu is

VirtualBox. It is open source and has stable versions.

The result of implementing jail idea by this software

was unacceptable. The efficiency of system largely

decreased due to high resource consumption and the

system almost went down. Some reasons of low

performance of full virtualization are:

 A single application has two OSs to traverse; the

guest OS and the hypervisor or host OS. More

processing equates to slower responses and more

overhead.

 Each OS takes space in memory, and memory is

always the most constrained resource on a server.

 Hardware support and interoperability for all of

the hardware on the market is difficult to emulate

well, so it is often a source of slower response

times and higher processing overhead.

Paravirtualization: A hypervisor provides the

virtualization abstraction of the underlying computer

system. In full virtualization, a guest operating system

runs unmodified on a hypervisor. However, improved

performance and efficiency is achieved by having the

guest operating system communicate with the

hypervisor. By allowing the guest operating system to

indicate its intent to the hypervisor, each can cooperate

to obtain better performance when running in a virtual

machine. This type of communication is

paravirtualization. One of the most suitable softwares

for implementing this method in Ubuntu is Xen [7].

This method had problems like previous method with

some improvements [8].

Operating system-level virtualization: In this

technique the kernel of an operating system allows for

multiple isolated userspace instances, instead of just

one. OS-level virtualization have been designed to

provide the required isolation and security to run

multiple applications or copies of the same OS (but

different distributions of the OS) on the same server.

Considering the above table, the best way to implement

Jail idea is operating system-level virtualization. The

advantage of this method is neglectable overload on

system performance. It means that large number of

OS-level virtualized machines, in the role of jail, can

be simultaneously performed on one system [3]. Thus,

any important service in operating system can have a

special machine to run independently. The process of

making a secure OS based on our idea is shown in

figure 1.

http://www.jofamericanscience.org/
mailto:editor@americanscience.org

http://www.jofamericanscience.org editor@americanscience.org

39

Minimizing OS

Adding OS-level

virtualization

technology

Design &

configure jail

structure

Run secure

OS with

jailed

services

Primary

Linux os

Figure 1. High-level preparation process of the secure

operating system

The most suitable software for implementing

this method is the OpenVZ [9]. Another software in

this context is called Linux-Vserver, but OpenVZ was

selected due to a better support and stable versions [10].

Since OpenVZ is the open source version of a

commercial software called Virtuozzo, it’s support is

better [11]. In this study OpenVZ was installed on

long-term version of Ubuntu. It should be mentioned

that installation of this software, because of changes in

the kernel, is difficult and time consuming, but after

successful installation the result was really impressive.

For example, 100 jail structures run concurrently on an

ordinary hardware, and there wasn’t any remarkable

changes in the system CPU and memory usage. In the

following, steps of making Jails will come and then we

have a detailed performance analysis:

1. OpenVZ software was chosen for this purpose. It's

recommended to use a separate partition for container

private directories. We used

/var/lib/vz/private/<CTID>.

 2. To install this software first, we must add the

relevant data repository address of Linux then get the

appropriate packages to Install:

Sudo wget

http://debian.systs.org/dso_archiv_signing_key.asc

sudo apt-key add dso_archiv_signing_key.asc

sudo rm dso_archiv_signing_key.asc

sudo apt-get update

$ Sudo apt-get install linux-openvz vzctl

$ Sudo apt-get remove - purge - auto-remove

linux-image-.* server

3. Then we should do some configurations; End of file

/etc/sysctl.conf was edited like this:

On Hardware Node we generally need

 # Packet forwarding enabled and proxy arp disabled

 net.ipv4.conf.default.forwarding = 1

 net.ipv4.conf.default.proxy_arp = 1

 net.ipv4.ip_forward = 1

 # Enables source route verification

 net.ipv4.conf.all.rp_filter = 1

 # Enables the magic-sysrq key

 kernel.sysrq = 1

 # TCP Explict Congestion Notification

 # Net.ipv4.tcp_ecn = 0

 # We do not want all our interfaces to send redirects

 net.ipv4.conf.default.send_redirects = 1

 net.ipv4.conf.all.send_redirects = 0

4. Apply the changes in sysctl.conf file:

$ Sudo sysctl -p

5. In this state after restarting and booting from pached

kernel, we have jail ready kernel. It’s also available out

of uname –r command. Another confirmation

command can be ps ax | grep vz. A network interface

for jails should be seen in list:

ifconfig

 venet0 Link encap:UNSPEC HWaddr

00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00

UP BROADCAST POINTOPOINT RUNNING NOARP

MTU:1500 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

6. Now, to install a container you can use an OS

template. OS templates can be preconfigured for any

security issues relating to their special use. For

example:

http://www.jofamericanscience.org/
mailto:editor@americanscience.org

http://www.jofamericanscience.org editor@americanscience.org

40

sudo apt-get install

vzctl-ostmpl-ubuntu-12.04-x86_64

Now the infrastructure of Jail, which is

OS-level virtualization technology, is added to our

primary operating system, so we can make jail

structure by added virtualization technology. Figure 2

shows our status.

Figure 2. Overview of the secure operating system

Jails can be more secured by some measures;

 A two layer network filter: In addition to IPtable

rules in host, we can have IPtable rules per jail.

 Complete isolation: Complete isolation ensures

that the jails are secure and have full functional,

fault and performance isolation. Isolation is

achieved through multiple layers of security

designed to ensure that each jail is secure, isolated

and unaffected from other jails on the same

physical server. An abstraction layer in kernel,

mediates activity to the kernel and prevents any

single jail from taking the entire server down.

 File system access limitation: File system true

configs can ensure that a user cannot access any

other jail or part of host server.

 Copy on write technology: Copy on write

technology, which makes a local copy of anything

unique in the jail can be used for snapshot and

backup. Each jail reads from the base

environment but write into the jail’s private

workspace. [24]

 Using hardened OS templates: With templates,

many repetitive installation and hardening

configuration tasks can be avoided. The result is a

fully installed, ready to operate (virtual) server in

less time than manual installation [23].

 Monitoring and logging jail: A separated jail for

monitoring other jails and keeping their logs. Also

logs can be sent to remote machine.

In this step we should plan our jail structure.

The plan, depend on the server usage, can be changed.

For example, any of these Jail structures can include

one of the major services of operating system such as

web or mail service. Each jailed service will be run

separated from other services. In the other strategy

some related services, with the same level of security

needed, can be put in one jail. Also we can make one or

more honeypot jails. A honeypot is a trap set to detect

unauthorized use of information systems. The

important result is that the failure of other services

doesn’t affect on jailed services and vice versa. A

sample jail configuration has shown in figure 3.

Figure 3. An example of configuring the operating

system after creation of jail structure

In the figure 3, each module is independent of

other modules. Failure of each one has no effect on

others. For example, if the HTTP service is targeted by

DoS attack only web service goes down and other

services continue their task. Also, HTTP jail can be

recovered easily for solving the problem and without

any effect on other services. Restarting HTTP jail will

be done by only a command from host [12]. A

honeypot jail is a system that looks and acts like a

production environment but is actually a monitored

trap, deployed in a network with enough interesting

data to attract hackers, but created to log their activity

and keep them from causing damage to the actual

production environment [19]. Each jail has its own:

 Files: System libraries, applications, virtualized

/proc and /sys, virtualized locks etc.

 Users and groups: Each container has its own root

user, as well as other users and groups.

 Process tree: A container only sees its own

processes starting from init.

 Network: Virtual network device, which allows a

container to have its own IP addresses, as well as

a set of netfilter (iptables) and routing rules.

Ubuntu

unnecessary services

 Minimal

OS

OSLV

Jail

Mechanism

HTTP

jail

FTP

jail

Email

jail

Honey

pot jail

Monitoring & logging jail

http://www.jofamericanscience.org/
mailto:editor@americanscience.org

http://www.jofamericanscience.org editor@americanscience.org

41

 Devices: If needed, any container can be granted

access to real devices like network interfaces,

serial ports, disk partitions, etc.

 IPC objects: Shared memory, semaphores, and

messages.

5. Results
The result of running jails with this method [5]

and its effect on system performance is shown in the

table 4:

Table 4. Mean response time (ms)

Jailed system Primary

system

Number of

running

threads

12 11 500

13 12 550

13 13 600

16 14 650

20 15 700

25 19 750

30 22 800

 As we can see in table 4, the mean response time

of jailed system is a bit more than primary system and

is venial. These results are shown in figure 4, again.

Figure 4. Effect of jail mechanism on response time of

system

As shown in figure 4, in a server without jail

structure HTTP service is overloaded by a DDoS attack.

In this situation database service went down. The

attack is simulated by DoSHTTP testing tool version

2.0 on some virtual machines. Requests lost of HTTP

flood arrived 99.99% and similar state for database

requests. But in figure 5 we see the same scenario on

jailed OS.

Figure 5. Impact of DDosS attack on all services of

server

As shown in figure 5 we have a jailed

structure that its HTTP service is targeted by a DDoS

attack. The same scenario of previous figure but only

HTTP jail is overloaded and database jail continue its

service. It means requests lost of HTTP flood arrived

99.99% but database is up. Overloading of HTTP

service is limited to jail allocated resources. Also

monitoring jail can detect problem and act.

Figure 6. Impact of DDosS attack on targeted service in

jailed OS

Finally, if the two described traditional methods

combine with jail idea, an acceptable secure product

will yield.

6. Conclusions

The propose of this research was improving

security of server operating systems. First, available

methods for making secure operating system was

expressed. Then another approach to build a secure

server was introduced. New method was based on

creating containers within an operating system and

isolation of critical services within the jails.

The importance of this model is in this point: it

Number of Treads

Zo
m

b
ie

s

DDoS

Attacker

 Secure OS with

Databas

e jail

HTTP

jail

Monitoring & logging jail

Zo

m
b

ie
s

DDoS

Attacker

Database

HTTP

Services

http://www.jofamericanscience.org/
mailto:editor@americanscience.org

http://www.jofamericanscience.org editor@americanscience.org

42

improves security factors without any bad impacts on

performance of OS. In the other word the performance

of our jailed OS is like the primary OS, but CIA

(confidentiality, Integrity, and availability) factors are

significantly improved. Confidentialrity is improved by

partitioned file system. Integrity of data is obtained by

limiting access to jailed data. Availability of services is

significantly increases by options like backup jail and

live migration.

The other important result of our research is

improving continuity of services after attacks. In usual

OS when an attacker hacks the OS he can access all

services and disturb them, but in our jailed OS only

hacked service is disturbed and other services continue

their tasks. Also disturbed service can be recovered

immediately by starting it’s back up jail. Some future

works that can be offered, include:

 Improving available methods for OS-level

virtualizing exactly in tools.

 Providing a conceptual model for finding the

optimum form of partitioning the system to jails.

 And a monitoring and logging system specialized

for virtualized environments.

References

[1] M. D. Bauer, Building Secure Servers with Linux,

O'Reilly, 2002.

[2] Udo Steinberg, Bernhard Kauer, NOVA: a

microhypervisor-based secure virtualization

architecture, Proceedings of the 5th European

conference on Computer systems, April 13-16,

2010, Paris, France.

[3] National Institute of Standards and Technology,

http://nist.gov, 2012.

[4] Yoshiki Sameshima, Hideaki Saisho, Tsutomu

Matsumoto, and Norihisa Komoda, Windows

Vault: Prevention of Virus Infection and Secret

Leakage with Secure OS and Virtual Machine, in

Pre-Proceedings of the 8th International Workshop

of Information Security Applications 2007 (WISA

2007), pp.249-261, 2007.

[5] P. Padala, X. Zhu, Z. Wang, S. Singhal, K. G. Shin,

Performance Evaluation of Virtualization

Technologies for Server Consolidation,

HPL-2007-59.

[6] Mihai Christodorescu, Reiner Sailer Douglas Lee

Schales, Daniele Sgandurra, Diego Zamboni,

Cloud security is not (just) virtualization security:

a short paper, Proceedings of the 2009 ACM

workshop on Cloud computing security,

November 13-13, 2009, Chicago, Illinois, USA.

[7] XenSource, http://www.xensource.com, 2012.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T.

Harris, A. Ho, R. Neugebauer, I. Pratt and A. War

eld. Xen and the art of virtualization, In

Proceedings of the 19th ACM Symposium on

Operating Systems Principles (SOSP), October

2003.

[9] OpenVZ: http://openvz.org, 2012.

[10] Linux VServer, http://linux-vserver.org, 2010.

[11] Virtuozzo, http://www.swsoft.com/en/virtuozzo,

2010.

[12] S. Bhattiprolu, W. Biederman, S. Hallyn, D.

Lezcano, Virtual servers and checkpoint/restart in

mainstream Linux, ACM SIGOPS Operating

Systems Review, Volume 42 Issue 5 (July

2008).

[13] Fred Cohen, The Virtualization Solution, IEEE

Security and Privacy, vol. 8, no. 3, pp. 60-63,

May/June 2010.

[14] Flavio Lombardi, Roberto Di Pietro, Secure

virtualization for cloud computing, Journal of

Network and Computer Applications, Volume 34,

Issue 4, 2010.

[15] Diane Barrett, Gregory Kipper, Virtualization

Challenges, Virtualization and Forensics, Syngress,

Boston, 2010.

[16] Flavio Lombardi, Roberto Di Pietro, KvmSec: a

security extension for Linux kernel virtual

machines, Proceedings of the 2009 ACM

symposium on Applied Computing, March 08-12,

2009, Honolulu, Hawaii.

[17] Flavio Lombardi and Roberto Di Pietro. Secure

virtualization for cloud computing. J. Netw.

Comput. Appl. 34, 4. July 2011.

[18] Bastille linux, http://www.bastille-linux.org, 2012.

[19] John Hoopes. Virtualization for Security: Including

Sandboxing, Disaster Recovery, High Availability,

Forensic Analysis, and Honeypotting. Syngress

Publishing. 2008.

[20] Karen A. Scarfone, Murugiah P. Souppaya, and

Paul Hoffman. SP 800-125. Guide to Security for

Full Virtualization Technologies. Technical Report.

NIST, Gaithersburg, MD, United States. 2011.

[21] Yan Wen, Jinjing Zhao, Gang Zhao, Hua Chen, and

Dongxia Wang. A Survey of Virtualization

Technologies Focusing on Untrusted Code

Execution. In Proceedings of the 2012 Sixth

International Conference on Innovative Mobile and

Internet Services in Ubiquitous Computing (IMIS

'12). IEEE Computer Society, Washington, DC,

USA, 378-383. 2012.

[22] Kun Wang, Jia Rao, and Cheng-Zhong Xu. Rethink

the virtual machine template. In Proceedings of the

7th ACM SIGPLAN/SIGOPS international

conference on Virtual execution environments

(VEE '11). ACM, New York, NY, USA, 39-50.

2011.

[23] http://www.vmware.com/pdf/vc_2_templates_usag

e_best_practices_wp.pdf, 2012.

http://www.jofamericanscience.org/
mailto:editor@americanscience.org
http://linux-vserver.org/
http://www.swsoft.com/en/virtuozzo

http://www.jofamericanscience.org editor@americanscience.org

43

[24] Yang Yu. 2007. Os-Level Virtualization and its

Applications. Ph.D. Dissertation. State University

of New York at Stony Brook, Stony Brook, NY,

USA. AAI3337611.

[25] Ryan Shea and Jiangchuan Liu. Understanding the

impact of denial of service attacks on virtual

machines. In Proceedings of the 2012 IEEE 20th

International Workshop on Quality of Service

(IWQoS '12). IEEE Press, Piscataway, NJ, USA,

Article 27, 9 pages. 2012.

[26] Yih Huang and Anup K. Ghosh. Automating

Intrusion Response via Virtualization for Realizing

Uninterruptible Web Services. In Proceedings of

the 2009 Eighth IEEE International Symposium on

Network Computing and Applications (NCA '09).

IEEE Computer Society, Washington, DC, USA,

114-117. 2009.

[27] Ruo Ando, Zong-Hua Zhang, Youki Kadobayashi,

and Yoichi Shinoda. A Dynamic Protection System

of Web Server in Virtual Cluster Using Live

Migration. In Proceedings of the 2009 Eighth IEEE

International Conference on Dependable,

Autonomic and Secure Computing (DASC '09).

IEEE Computer Society, Washington, DC, USA,

95-102. 2009.

[28] Ali Peiravi, Mehdi Peiravi, Internet security - cyber

crime Paradox, Journal of American Science,

6(1):15-24, 2010.

6/18/2023

http://www.jofamericanscience.org/
mailto:editor@americanscience.org

