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1. Introduction 

 

There are so many optimisation problems in 

various areas of science and engineering. For solving 

them, there exist twofold approaches; classical 

approaches and heuristic approaches. Classical 

approaches such as linear programming and non-

linear programming are not efficient enough in 

solving optimisation problems. Since they suffer 

from curse of dimensionality and also require 

preconditions such as continuity and differentiability 

of objective function that usually are not met. 

 

Heuristic approaches which are usually bio-

inspired include a lot of approaches such as genetic 

algorithms, evolution strategies, differential evolution 

and so on. Heuristics do not expose most of the 

drawbacks of classical and technical approaches. 

Among heuristics, particle swarm optimisation (PSO) 

has shown more promising behavior. 

 

PSO is a stochastic, population-based optimisation 

technique introduced by Kennedy and Eberhart in 

1995 (Kennedy & Eberhart, 1995). It belongs to the 

family of swarm intelligence computational 

techniques and is inspired of social interaction in 

human beings and animals. 

 

Some PSO features that make it so efficient in 

solving optimisation problems are the followings: 

 

 In comparison with other heuristics, it has less 

parameters to be tuned by user. 

 Its underlying concepts are so simple. Also its 

coding is so easy. 

 It provides fast convergence. 

 It requires less computational burden in 

comparison with most other heuristics. 

 It provides high accuracy. 

 Roughly, initial solutions do not affect its 

computational behavior. 

 Its behavior is not highly affected by increase in 

dimensionality. 

 It is efficient in tackling multi-objectives, multi-

modalities, constraints, discrete/integer variables. 

 There exist many efficient strategies in PSO for 

mitigating “premature convergence.” Thus, its 

success rate is so high. 

 

However, typical PSO variants are merely 

applicable to static optimisation problems while 

many real-world optimization problems are dynamic. 

Dynamic problem is a problem whose objective 

function and/or constraints of a dynamic problem 

vary over time. Therefore, for solving dynamic 

problems, typical PSO variants should be modified. 

In this paper various PSO variants specially designed 

for dynamic problems are analysed in details. 

Moreover, their pros and cons are mentioned. 

According to the author’s knowledge, in literature, 

there is no comprehensive analysis on PSO variants 

for dynamic problems. The paper is organised as 

follows; in section 2, fundamental concepts and basic 

variants of PSO are introduced. In section 3, some 

applications of PSO are mentioned. Finally, drawing 

conclusions is implemented in section 4.  
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2. Fundamental Concepts and Basic Variants of 

PSO  

PSO launches with the random initialisation of a 

population (swarm) of individuals (particles) in the n-

dimensional search space (n is the dimension of 

problem in hand). The particles fly over search space 

with adjusted velocities. In PSO, each particle keeps 

two values in its memory; its own best experience, 

that is, the one with the best fitness value (best fitness 

value corresponds to least objective value since 

fitness function is conversely proportional to 

objective function) whose position and objective 

value are called Pi and Pbest respectively and the best 

experience of the whole swarm, whose position and 

objective value are called Pg  and gbest  respectively. 

Let denote the position and velocity of particle i with 

the following vectors:  

 

Xi = (Xi1, Xi2, … , Xid, … , Xin) 
  

Vi = (Vi1, Vi2, … , Vid, … , Vin) 
 

The velocities and positions of particles are 

updated in each time step according to the following 

equations: 

 

Vid(t + 1) = Vid (t) + C1 r1d(Pid − Xid)+C2r2d(Pgd −

Xid)                               (1) 

                                                              

 

Xid(t + 1) = Xid (t) + Vid (t + 1)               (2) 
 

Where C1and C2 are two positive numbers and r1d 

and r2d  are two random numbers with uniform 

distribution in the interval [0,1]. Here, according to 

(1), there are three following terms in velocity update 

equation:  

 

The first term this models the tendency of a particle 

to remain in the same direction it has traversing and 

is called “inertia,” “habit,” or “momentum.” 

 

The second term is a linear attraction toward the 

particle’s own best experience scaled by a random 

weight C1r1d . This term is called “memory,” 

“nostalgia,” or “self-knowledge.” 

 

The third term is a linear attraction toward the best 

experience of the all particles in the swarm, scaled by 

a random weight 𝐶2𝑟2𝑑 . This term is called 

“cooperation,” “shared information,” or “social 

knowledge.” 

 

The procedure for implementation of PSO is as 

follows: 

 

1) Particles’ velocities and positions are Initialised 

randomly, the objective value of all particles are 

calculated, the position and objective of each 

particle are set as its 𝑃𝑖  and 𝑃𝑏𝑒𝑠𝑡  respectively 

and also the position and objective of the particle 

with the best fitness (least objective) is set as Pg 

and gbest respectively. 

2) Particles’ velocities and positions are updated 

according to equations (1) and (2). 

3) Each particle’s Pbest  and Pi are updated, that is, if 

the current fitness of the particle is better than its 

Pbest , Pbest  and Pi  are replaced with current 

objective value and position vector respectively. 

4)  𝑃𝑔 and  𝑔𝑏𝑒𝑠𝑡  are updated, that is, if the current 

best fitness of the whole swarm is fitter than 

𝑔𝑏𝑒𝑠𝑡 ,  𝑔𝑏𝑒𝑠𝑡  and 𝑃𝑔 are replaced with current best 

objective and its corresponding position vector 

respectively. 

5) Steps 2-4 are repeated until stopping criterion 

(usually a prespecified number of iterations or a 

quality threshold for objective value) is reached. 

 

It should be mentioned that since the velocity 

update equations are stochastic, the velocities may 

become too high, so that the particles become 

uncontrolled and exceed search space. Therefore, 

velocities are bounded to a maximum value 𝑉𝑚𝑎𝑥 , 

that is (Eberhart, Shi, & Kennedy, 2001) 

 

If |Vid| > Vmax then Vid = sign(Vid)Vmax              (3) 

     

Where sign represents sign function. 

 

However, primary PSO characterised by (1) and 

(2) does not work desirably; especially since it 

possess no strategy for adjusting the trade-off 

between explorative and exploitative capabilities of 

PSO. Therefore, the inertia weight PSO is introduced 

to remove this drawback. In inertia-weight PSO, 

which is the most commonly-used PSO variant, the 

velocities of particles in previous time step is 

multiplied by a parameter called inertia weight. The 

corresponding velocity update equations are as 

follows (Shi & Eberhart, 1998; Shi & Eberhart, 1999) 

 

Vid(t + 1) = ωVid (t) +

C1 r1d(Pi-Xid)+C2r2d(Pgd-Xid)                

 

Xid(t + 1) = Xid (t) + Vid (t + 1)            (4)  
 

Inertia weight adjusts the trade-off between 

exploration and exploitation capabilities of PSO. The 

less the inertia weight is, the more the exploration 

http://www.jofamericanscience.org/
http://www.americanscience.org/
mailto:editor@americanscience.org


Journal of American Science 2023;19(6)                              http://www.jofamericanscience.orgJAS 

 

http://www.americanscience.org            editor@americanscience.org 
 

30 

capability of PSO will be and vice versa. Commonly, 

it is decreased linearly during the course of the run, 

so that the search effort is mainly focused on 

exploration at initial stages and is focused more on 

exploitation at latter stages of the run.   The flowchart 

of linearly decreasing inertia weight PSO which is 

usually called conventional PSO, is depicted is 

Figure 1. 

 

2.1 Constricted PSO 

 
     Constricted PSO, like inertia weight PSO, was 

invented to enhance the exploration capability of 

PSO and to hinder explosion of swarm. Velocity 

update equations in this variant are as follows (Clerc, 

and Kennedy, 2002): 

 

Vid(t + 1) = χ (Vid (t) + C1 r1d(Pid − Xid)

+ C2r2d(Pgd − Xid))              (5) 

 

 

Xid(t + 1) = Xid (t) + Vid (t + 1)                            
 

Where 

 

χ =
2

(2−C−√(C2− 4C))
    and   C = C1 + C2                    (6)        

                         

 

Usually, C is set to 4.1 and so χ=0.729.  

 

 

2.2 Cognitive Only PSO 

 

     In velocity update equations of PSO in (1) and (2), 

if the value of social acceleration coefficient is set to 

zero (C2=0), each particle is solely attracted to the 

best experience of itself and  is not affected by other 

particles, that is, social interaction and information 

sharing does not exist. This variant is called 

cognitive-only PSO and has been used rarely in PSO 

applications. 

 

Vid(t + 1) = Vid (t) + C1 r1d(Pi − Xid)          (7) 
 

 

Xid(t + 1) = Xid (t) + Vid (t + 1)                             
                          

2.3 Social Only PSO 

 

     In PSO’s velocity update equations in (1) and (2), 

if the value of cognitive acceleration coefficient is set 

to zero (C1=0), the particles are solely attracted to the 

best experience of the whole swarm and not their 

own best experience. This variant is called cognitive-

only PSO and has been used rarely in PSO 

applications. 

 

Vid(t + 1) = Vid (t) + C2r2d(Pgd − Xid)          (8) 

 

 

Xid(t + 1) = Xid (t) + Vid (t + 1)                      
                                 

 

2.3.1 Bare-Bone (Velocity-free ) PSO  

 

     Bare-bones PSO is a version of PSO in which 

position update equations are replaced by a procedure 

that samples a parametric probability density 

function. In this variant, the concept of velocity is 

missing. A particle’s position update equation is as 

follows (Kennedy, 2003) 

 

Xid (t + 1) = N(μid (t),   σid (t))                     (9)     
 

 

μid (t) =  
Pid  +Pgd

2
                                                 (10)      

  

 

σid (t) = √|Pid  (t) − Pgd (t)|                              (11)      

                                      

 

Where N stands for a Normal distribution.      

 

3.  Applications of PSO 

 
The areas of PSO applications is extremely wide. For 

instance, it has been applied in medicine (Chen, 

Wang et al. ; Gandhi, Karnan et al. ; Kessentini, 

Barchiesi et al. ; Yang and Zhang ; Zabidi, Lee Yoot 

et al. ; Nakib, Roman et al. 2007; Liman, Haiming et 

al. 2008), chemistry (Qiang, Wen-cong et al.), 

economy (Ernawati and Subanar ; An-Pin, Chien-

Hsun et al. 2009), geology (Dianfeng, Yaolin et al. ; 

Jen-Chih and Chen ; Han and Wang 2009; Liang, 

Guangming et al. 2009), mechanical engineering 

(Bin, Hangxia et al. ; Jianghui and Wenjun ; Mukesh, 

Lingadurai et al. ; Qiang and Fang 2006; Hushan, 

Shengdun et al. 2008; Changlin, Heyan et al. 2009; 

Youxin and Xiaoyi 2009), biology (Chengwei and 

Jianhua 2008), geography (Hua-sheng, Long et al. ; 

Wenyu, Xuan et al. 2009), civil (Huawang and 

Wanqing 2008; Min and Fang-Fang 2009), computer 

science (Geetha and Sathya ; Guosheng, Jianxun et 

al. ; Shuzhi, Ping et al. ; Toreini and Mehrnejad ; 

Youssef ; van der Merwe and Engelbrecht 2003; 

Alam, Dobbie et al. 2008; Xueping, Qingzhou et al.  
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2008), electrical power engineering (Amanifar ; 

Ghanbarzadeh, Goleijani et al. ; Iyer, Xiaomin et al. ; 

Nabavi, Hajforoosh et al. ; Sundareswaran, Nayak et 

al. ; Slochanal, Saravanan et al. 2005; Sadati, Hajian 

et al. 2007; Das, Prasai et al. 2009; El-Gammal and 

El-Samahy 2009; Zhao, Zhan et al. 2009). 

 

4. Conclusions 

 

     In this paper, fundamental concepts of PSO have 

been introduced, basic PSO variants have been 

explained and analysed. Furthermore, some 

applications of PSO in different areas have been 

mentioned. The authors believe that this paper can be 

useful for researchers in related areas. 
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Input PSO parameters including 

𝐶1 ,𝐶2 ,𝑉𝑚𝑎𝑥  , 𝑡𝑚𝑎𝑥 ,𝑁𝑝 ,𝜔𝑖 ,𝜔𝑓 

 

Start 

t=0, ω(0) = 𝜔𝑖  

 

 
Initialise positions of particles randomly and their corresponding 

fitness value is computed. The position of each particle gets its 

personal best (𝑃𝑖) and its fitness gets 𝑃𝑏𝑒𝑠𝑡  . The position and 

fitness of the particle with the best fitness are set as 𝑃𝑔  and 𝑔𝑏𝑒𝑠𝑡  

respectively. 

Vid (t + 1) = ω(t)Vid  (t) + C1 r1d(Pid − Xid )+C2r2d(Pgd − Xid)       

Update positions and velocities of particles via: 
 

Xid(t + 1) = Xid  (t) + Vid  (t + 1)    

If |Vid (t + 1)| > Vmax  then Vid (t + 1) = sign(Vid)Vmax      

 

For j=1, 2,…, 𝑁𝑝  

 

If f (Xj(t + 1)) > gbest   then Pg = Xj(t + 1) and gbest = f(Xj(t + 1))   

If f(Xi(t + 1)) > 𝑓(Pi)  then Pi = Xi(t + 1) and Pbest = f(Xi(t + 1))   

𝑡 < 𝑡𝑚𝑎𝑥  

𝜔(t) =  
ωmin − ωmax

ωmax

 + ωmax  

Output Pg  and  𝑔𝑏𝑒𝑠𝑡  

 

t=t+1 

End 

   
Fig.1 Flowchart of conventional PSO 
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